HDOJ 1163 Eddy's digital Roots(九余数定理的应用)
Problem Description
The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.
For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.
The Eddy’s easy problem is that : give you the n,want you to find the n^n’s digital Roots.
Input
The input file will contain a list of positive integers n, one per line. The end of the input will be indicated by an integer value of zero. Notice:For each integer in the input n(n<10000).
Output
Output n^n’s digital root on a separate line of the output.
Sample Input
2
4
0
Sample Output
4
4
题意:输入一个数n,求n的n次方的数根。
数根:即某数字的每一位上的数字之和,如果和大于等于10,重复每一位上的数字之和,直到每一位上的数字之和是个位数。则这个个位数就是这个数字的数根。
九余数定理:
一个数对九取余,得到的数称之为九余数;
一个数的九余数 等于 它的各个数位上的数之和的九余数!
例:
5^5=3125
3+1+2+5=11
1+1=2(digital Roots)
3125%9=2;
一个数对9取余就等于它的个位数字之和对9取余就等于数根对9取余。
import java.util.Scanner;
public class Main{
public static void main(String[] args) {
Scanner sc= new Scanner(System.in);
while(sc.hasNext()){
int n = sc.nextInt();
if(n==0){
return ;
}
int m = 1;
for(int i=0;i<n;i++){
m=(m*n)%9;
}
if(m==0){
System.out.println(9);
}else{
System.out.println(m);
}
}
}
}
HDOJ 1163 Eddy's digital Roots(九余数定理的应用)的更多相关文章
- HDOJ 1163 Eddy's digital Roots 九余数定理+简单数论
我在网上看了一些大牛的题解,有些知识点不是太清楚, 因此再次整理了一下. 转载链接: http://blog.csdn.net/iamskying/article/details/4738838 ht ...
- HDU 1163 Eddy's digital Roots
Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
- hdu 1163 Eddy's digital Roots 【九余数定理】
http://acm.hdu.edu.cn/showproblem.php?pid=1163 九余数定理: 如果一个数的各个数位上的数字之和能被9整除,那么这个数能被9整除:如果一个数各个数位上的数字 ...
- Hdu1163 Eddy's digitai Roots(九余数定理)
题目大意: 给定一个正整数,根据一定的规则求出该数的“数根”,其规则如下: 例如给定 数字 24,将24的各个位上的数字“分离”,分别得到数字 2 和 4,而2+4=6: 因为 6 < 10,所 ...
- HDU 1163 Eddy's digital Roots(模)
HDU 1163 题意简单,求n^n的(1)各数位的和,一旦和大于9,和再重复步骤(1),直到和小于10. //方法一:就是求模9的余数嘛! (228) leizh007 2012-03-26 21: ...
- Eddy's digital Roots(九余数定理)
Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
- HDU-1163 Eddy's digital Roots(九余数定理)
Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
- Eddy's digital Roots
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...
- HDU-1163Eddy's digital Roots,九余定理的另一种写法!
下午做了NYOJ-424Eddy's digital Roots后才正式接触了九余定理,不过这题可不是用的九余定理做的.网上的博客千篇一律,所以本篇就不发篇幅过多介绍九余定理了: 但还是要知道什么是九 ...
随机推荐
- linux 启动network后报错:device eth0 does not seem to be present, delaying initialization
问题背景: 在vsphere client中部署ovf模板后启动linux 的network后提示:device eth0 does not seem to be present, delaying ...
- [转] 深入剖析 linux GCC 4.4 的 STL string
本文通过研究STL源码来剖析C++中标准模板块库std::string运行机理,重点研究了其中的引用计数和Copy-On-Write技术. 平台:x86_64-redhat-linux gcc ver ...
- Visual Studio 2012 Ultimate 上安装 Python 开发插件 PTVS
1.我的环境 操作系统:32位 Win7 旗舰版 Service Pack 1 VS版本:Microsoft Visual Studio Ultimate 2012 版本 11.0.50727.1 R ...
- Topcoder SRM 639 (Div.2)
A.ElectronicPetEasy [题意]一个数st1开始,每次加p1,一共加t1次,另外一个数st2开始,每次加p2,一共加t2次,输入的数均小于1000,问这两个数有没有可能相等,有可能输出 ...
- 5、第5节课CSS补充和html 标签讲解20150924
1. DIV 隐藏 A: 隐藏之后不占位置 display:none; B:隐藏之后占位置 visibility:hidden; 2.DIV 排序 z-index:2; 默认是1,如果想DIV在上 ...
- 第1章 你真的了解C#吗?
什么是C#? C#是由微软公司开发的一种面向对象且运行于.Net Framework之上的高级程序设计语言,发布于2000年6月. 什么是.Net Framework 我们可以这样去理解.Net Fr ...
- NYOJ737
题意:给n堆石子,按照顺序排列,只能相邻两堆石子合并,求最后合并为一堆时所花费的最小代价,石子合并代价为两堆石子之和. 输入: n(石子堆数) Xi(每堆石子个数) 输出: T(最小代价) 思路:经典 ...
- Java 小型学生管理系统心得
这个学生管理系统相对来说比较简单,主要就是复习下java怎么连接数据库,然后你怎么来实现这个功能,我简单的说下思路吧. 首先你要构思好这个界面,他包括增删查改这些基本功能,然后你去分析这些功能都能怎么 ...
- HP SimpleXML
PHP SimpleXML PHP SimpleXML 处理最普通的 XML 任务,其余的任务则交由其它扩展处理. 什么是 PHP SimpleXML? SimpleXML 是 PHP 5 中的新特性 ...
- thinkphp 配置
ThinkPHP框架中所有配置文件的定义格式均采用返回PHP数组的方式,格式为: //项目配置文件 return array( 'DEFAULT_MODULE' => 'Index', //默认 ...