It is possible to show that the square root of two can be expressed as an infinite continued fraction.

 2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...

By expanding this for the first four iterations, we get:

1 + 1/2 = 3/2 = 1.5
1 + 1/(2 + 1/2) = 7/5 = 1.4
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...

The next three expansions are 99/70, 239/169, and 577/408, but the eighth expansion, 1393/985, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.

In the first one-thousand expansions, how many fractions contain a numerator with more digits than denominator?

题目大意:

2的平方根可以被表示为无限延伸的分数:

 2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...

将其前四次迭代展开,我们得到:

1 + 1/2 = 3/2 = 1.5
1 + 1/(2 + 1/2) = 7/5 = 1.4
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...

接下来三次迭代的展开是99/70, 239/169, and 577/408, 但是第八次迭代的展开, 1393/985, 是第一个分子的位数超过分母的位数的例子。

在前1000次迭代的展开中,有多少个的分子位数超过分母位数?

//(Problem 57)Square root convergents
// Completed on Wed, 12 Feb 2014, 04:45
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h> int add(int des[],int n1,int src[],int n2){
int i,f;
for(i= , f = ; i < n1 || i < n2 ; i++){
des[i] += ( f + src[i] ) ;
f = des[i]/ ;
des[i] %= ;
}
if(f)
des[i++] = f ;
return i;
}
int main(){
int num = ,sum = , k;
int array[][] = {} ;
int nn = ,dn = , f = ;//nn分子长度,dn分母长度,f分子位置 array[][] = ;
array[][] = ;
while(num<){
//分子加分母放到分子位置成为下一个分母
k = add(array[f],nn,array[-f],dn);
//分子加分母放到分母位置成为下一个分子
nn = add( array[-f],dn,array[f],k ) ;
dn = k ;
f = - f ;
if(nn > dn) sum++;
num++;
}
printf("%d\n",sum);
return ;
}
Answer:
153

(Problem 57)Square root convergents的更多相关文章

  1. Project Euler 57: Square root convergents

    五十七.平方根收敛(Square root convergents) 二的平方根可以表示为以下这个无穷连分数: \[ \sqrt 2 =1+ \frac 1 {2+ \frac 1 {2 +\frac ...

  2. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

  3. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  4. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  5. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  6. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  7. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  8. (Problem 72)Counting fractions

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  9. (Problem 53)Combinatoric selections

    There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...

随机推荐

  1. tarjan算法大意

    Tarjan算法 (以发现者Robert Tarjan命名)是一个在图中寻找强连通分量的算法.算法的基本思想为:任选一结点开始进行深度优先搜索dfs(若深度优先搜索结束后仍有未访问的结点,则再从中任选 ...

  2. SGU 200 Cracking RSA (高斯消元)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意:给出m个整理,因子全部为前t个素数.问有多少 ...

  3. hdu 2519 新生晚会 排列组合

    通过阶段性计算减少一次性的大值计算 #include <stdio.h> int main() { int t, a, b, i; __int64 c; scanf("%d&qu ...

  4. 寻找数列中第k大的数算法分析

    问题描述:给定一系列数{a1,a2,...,an},这些数无序的,现在求第k大的数. 看到这个问题,首先想到的是先排序,然后直接输出第k大的数,于是得到啦基于排序的算法 算法一: #include&l ...

  5. Java关键字static

    链接地址:http://www.cnblogs.com/devinzhang/archive/2011/12/13/2286367.html static表示“全局”或者“静态”的意思,用来修饰成员变 ...

  6. Problem B: Excuses, Excuses!

    Description Judge Ito is having a problem with people subpoenaed for jury duty giving rather lame ex ...

  7. UVa 10806 Dijkstra,Dijkstra(最小费用最大流)

    裸的费用流.往返就相当于从起点走两条路到终点. 按题意建图,将距离设为费用,流量设为1.然后增加2个点,一个连向节点1,流量=2,费用=0;结点n连一条同样的弧,然后求解最小费用最大流.当且仅当最大流 ...

  8. <转>java编译问题:使用了未经检查或不安全的操作

    使用了未经检查或不安全的操作 在本人用editplus写java文件时碰到的问题.      源代码 import java.util.*; class collection{ public stat ...

  9. hadoop 主节点存储告警

    之前只他调整过dfs 的存储目录到最大配额的目录,其它没有处理(就是在默认的/ 目录下,而这个目录的存储配额只有50G) 运行一周的时间不到,集群开始告警,查看是目录/ 的存储占用超过了60% 再查看 ...

  10. 关于asp.net 的一些好资料地址 , 防止丢失!

    学习数据结构的好网站 : http://student.zjzk.cn/course_ware/data_structure/web/practice/practice1.htm http://www ...