It is possible to show that the square root of two can be expressed as an infinite continued fraction.

 2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...

By expanding this for the first four iterations, we get:

1 + 1/2 = 3/2 = 1.5
1 + 1/(2 + 1/2) = 7/5 = 1.4
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...

The next three expansions are 99/70, 239/169, and 577/408, but the eighth expansion, 1393/985, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.

In the first one-thousand expansions, how many fractions contain a numerator with more digits than denominator?

题目大意:

2的平方根可以被表示为无限延伸的分数:

 2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...

将其前四次迭代展开,我们得到:

1 + 1/2 = 3/2 = 1.5
1 + 1/(2 + 1/2) = 7/5 = 1.4
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...

接下来三次迭代的展开是99/70, 239/169, and 577/408, 但是第八次迭代的展开, 1393/985, 是第一个分子的位数超过分母的位数的例子。

在前1000次迭代的展开中,有多少个的分子位数超过分母位数?

//(Problem 57)Square root convergents
// Completed on Wed, 12 Feb 2014, 04:45
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h> int add(int des[],int n1,int src[],int n2){
int i,f;
for(i= , f = ; i < n1 || i < n2 ; i++){
des[i] += ( f + src[i] ) ;
f = des[i]/ ;
des[i] %= ;
}
if(f)
des[i++] = f ;
return i;
}
int main(){
int num = ,sum = , k;
int array[][] = {} ;
int nn = ,dn = , f = ;//nn分子长度,dn分母长度,f分子位置 array[][] = ;
array[][] = ;
while(num<){
//分子加分母放到分子位置成为下一个分母
k = add(array[f],nn,array[-f],dn);
//分子加分母放到分母位置成为下一个分子
nn = add( array[-f],dn,array[f],k ) ;
dn = k ;
f = - f ;
if(nn > dn) sum++;
num++;
}
printf("%d\n",sum);
return ;
}
Answer:
153

(Problem 57)Square root convergents的更多相关文章

  1. Project Euler 57: Square root convergents

    五十七.平方根收敛(Square root convergents) 二的平方根可以表示为以下这个无穷连分数: \[ \sqrt 2 =1+ \frac 1 {2+ \frac 1 {2 +\frac ...

  2. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

  3. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  4. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  5. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  6. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  7. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  8. (Problem 72)Counting fractions

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  9. (Problem 53)Combinatoric selections

    There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...

随机推荐

  1. 什么是epoll

    什么是epoll epoll是什么?按照man手册的说法:是为处理大批量句柄而作了改进的poll.当然,这不是2.6内核才有的,它是在2.5.44内核中被引进的(epoll(4) is a new A ...

  2. CCNP路由实验(2) -- OSPF

    OSPF作为一种内部网关协议(IGP),用于在同一个AS中的路由器之间交换路由信息.OSPF的特性如下:1.可适应大规模网络2.收敛速度快3.无路由环路4.支持VLSM和CIDR5.支持等价路由6.支 ...

  3. windows平台发消息到非UI线程.

    下面的代码是介绍如何在windows平台发消息到非UI线程. 主要是'PeekMessage || GetMessage' 这两个API的应用. 当他们被调用的时候,如果当前线程还没有消息循环,就会创 ...

  4. makefile简单helloworld

    最近要在unix系统上开发c++应用程序,但默认情况下unix编译c++程序需要使用makefile.其实makefile语法还是比较简单,看上去有点像ant.废话不说了,直接上helloworld. ...

  5. BootStrap 智能表单系列 首页 (持续更新中...)

    背景:本码农.NET后端工程师,在项目开发中发现写了很多重复的代码, 于是自己整了一套根据配置来生成form表单的插件,针对表单的改动仅需要修改配置的json即可 使用中发现还是蛮实用的,于是开源出来 ...

  6. 文件上传下载样式 --- bootstrap

    在平时工作中,文件上传下载功能属于不可或缺的一部分.bootstrap前端样式框架也使用的比较多,现在根据bootstrap强大的样式模板,自定义一种文件下载的样式. 后续会使用spring MVC框 ...

  7. Foundation 框架 NSFileManager,NSData 简单的文件操作

    一.简单展示NSFileManager的使用 #import <Foundation/Foundation.h> int main(int argc, const char * argv[ ...

  8. 手机测试Android程序

    手机测试Android程序   上传者:sanpi329     我也要“分享赚钱” 2014/7/9 关注(23) 评论(0)   声明:此内容仅代表网友个人经验或观点,不代表本网站立场和观点.   ...

  9. Eclipse+ADT的环境搭建

    Index: . Java环境变量的设置 . Android环境变量的设置 1.Java环境变量的设置 A.属性名称:JAVA_HOME 属性值:C:\Program Files\Java\jdk1. ...

  10. IC卡,ID卡,M1卡,射频卡

    一般把可读可写,频率是13.56MHz的射频卡称为IC卡,IC卡可以写入数据, 只能读,频率是125KHz的射频卡称为ID卡, M1卡是NXP公司的S50卡的一种叫法,国内的复旦F08,达华的TKS5 ...