hdu3594 强连通 tarjan
题意: 判断是不是强连通图 ,同时每一条边必须只能在一个环里
思路:之前我的强连通用的全是双深搜,结果题目的第二个要求很难判断,一开始写了三个深搜加上并查集,结果越写越乱,其实就是在判断一个边是否只在一个环内搞不定,后来看了下网上的代码,用的全是tarjan,没办法了,又学习了一下tarjan算法,学完后发现这个算法不错,比双深搜快一倍的时间吧,他的时间复杂度是O(n + m) n是点m是边,tarjan算法的运行步骤为第二问的解决提供了条件,其中的stack,low,dfn配合的很好,我们要开一个数组记录搜索路径,然后当我们搜到一个点发现他被搜过同时他还在stack中的话,我们直接通过路径数组原路返回到他,把路上所有的点的次数都加1(开个数组记录次数),如果发现有大于1的直接就NO了,还有就是点有一个点的次数不要加1,就是查找路径的第一个点的上一个点,也是路径中的最后一个点(因为是环),这样就ok了.
#include<stdio.h>
#include<string.h>
#include<stack>
#define N_node 25000 + 1000
#define N_edge 55000 + 1000
using namespace std;
typedef struct
{
int to ,next;
}STAR;
STAR E[N_edge];
int list[N_node] ,tot;
int mer[N_node];
int count[N_node];
int DFN[N_node] ,LOW[N_node];
int Index ,num ,okk;
int instack[N_node];
stack<int>st;
void add(int a ,int b)
{
E[++tot].to = b;
E[tot].next = list[a];
list[a] = tot;
}
int minn(int x ,int y)
{
return x < y ? x : y;
}
void merge(int e ,int s)
{
while(mer[s] != e)
{
count[s] ++;
if(count[s] >= 2)
{
okk = 1;
return ;
}
s = mer[s];
}
}
void Tarjan(int s)
{
if(okk) return;
DFN[s] = LOW[s] = Index ++;
st.push(s);
instack[s] = 1;
for(int k = list[s] ;k ;k = E[k].next)
{
int to = E[k].to;
if(!DFN[to])
{
mer[to] = s;
Tarjan(to);
LOW[s] = minn(LOW[to] ,LOW[s]);
}
else if(instack[to])
{
LOW[s] = minn(DFN[to] ,LOW[s]);
merge(to ,s);
if(okk) return;
}
}
if(LOW[s] == DFN[s])
{
num ++;
if(num > 1) okk = 1;
while(1)
{
int v = st.top();
st.pop();
instack[v] = 0;
if(v == s) break;
}
}
return ;
}
int main ()
{
int t ,i ,n ,a ,b;
scanf("%d" ,&t);
while(t--)
{
scanf("%d" ,&n);
memset(list ,0 ,sizeof(list));
memset(instack ,0 ,sizeof(instack));
memset(DFN ,0 ,sizeof(DFN));
memset(LOW ,0 ,sizeof(LOW));
memset(count ,0 ,sizeof(count));
for(i = 0 ;i < n ;i ++)mer[i] = i;
while(!st.empty()) st.pop();
tot = Index = 1 ,num = 0;
while(scanf("%d %d" ,&a ,&b) && a + b)
{
add(a ,b);
}
okk = 0;
for(i = 0 ;i < n ;i ++)
{
if(okk) break;
if(DFN[i]) continue;
Tarjan(i);
}
if(okk) printf("NO\n");
else printf("YES\n");
}
return 0;
}
hdu3594 强连通 tarjan的更多相关文章
- POJ 1236 Network of Schools(强连通 Tarjan+缩点)
POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意: 给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...
- hdu3594 强连通(仙人掌图)
题意:给定一张有向图,问是否是仙人掌图.仙人掌图的定义是,首先,这张图是一个强连通分量,其次所有边在且仅在一个环内. 首先,tarjan可以判强连通分量是否只有一个.然后对于所有边是否仅在一个环内,我 ...
- HDOJ迷宫城堡(判断强连通 tarjan算法)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...
- 强连通tarjan模版
#include<stdio.h> #include<iostream> #include<math.h> #include<queue> #inclu ...
- CF:Problem 427C - Checkposts强连通 Tarjan算法
tarjan算法第一题 喷我一脸. ...把手写栈的类型开成了BOOL.一直在找错.. . #include<cstdio> #include<cstring> #includ ...
- 【算法•日更•第二十八期】图论:强连通+Tarjan算法(一)
▎前言 一直都想学习这个东西,以为很难,结果发现也不过如此. 只要会些图论的基础就可以了. ▎强连通 ☞『定义』 既然叫强连通,那么一定具有很强的连通性. 强连通:就是指在一个有向图中,两个顶点可以互 ...
- hdu1269迷宫城堡 (强连通Tarjan+邻接表)
Problem Description 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每一个通道都是单向的,就是说 ...
- HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)
Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...
- Tarjan找桥和割点与点连通分量与边连通分量【未成形】
之前只学了个强连通Tarjan算法,然后又摸了缩点操作: 然后今天在lightoj摸了一道模板题,是求所有桥的题: 然后发现,要把:割点,割点集合,双连通,最小割边集合(桥),点连通分量,边连通分量都 ...
随机推荐
- SSH免密登陆和设置别名
目录 SSH免密登陆 SSH别名登陆 常见问题 SSH免密登陆 本机生成SSH私钥和公钥 ssh-keygen -t rsa 这样会在当前目录生成名为id_rsa的私钥文件和名为id_rsa.pub的 ...
- 腾讯一面问我SQL语句中where条件为什么写上1=1
目录 where后面加"1=1″还是不加 不用where 1=1 在多条件查询的困惑 使用where 1=1 的好处 使用where 1=1 的坏处 where后面加"1=1″还是 ...
- spring-Cloud初步依赖
<parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot ...
- 我与FreeBSD的故事之一
记得还是那些无聊的日子,群里有网友称Linux只能玩WPS,我表示质疑,并通过百度这个搜索引擎搜索到了Ubuntu Kylin,即由湖南的国防科技大学与Ubuntu社区合作并由其主导的Ubuntu麒麟 ...
- Hibernate在oracle中ID增长的方式
引用链接:http://blog.csdn.net/w183705952/article/details/7367272 Hibernate在oracle中ID增长的方式 第一种:设置ID的增长策略是 ...
- javascript中的Strict模式
目录 简介 使用Strict mode strict mode的新特性 强制抛出异常 简化变量的使用 简化arguments 让javascript变得更加安全 保留关键字和function的位置 总 ...
- wget 爬取网站网页
相应的安装命名 yum -y install wget yum -y install setup yum -y install perl wget -r -p -np -k -E http:// ...
- vscode远程连接linux服务器,可视化绘图
vscode远程连接linux服务器 想要实现的功能和解决方案 实现的功能: windows下直接使用远程linux服务器的python环境和文件来编写和运行py文件, 实时的编写py文件,和可视化绘 ...
- 【小白学算法】5.链表(linked list)、链表的添加
链表其实也就是 线性表的链式存储结构,与之前讲到的顺序存储结构不同. 我们知道顺序存储结构中的元素地址都是连续的,那么这就有一个最大的缺点:当做插入跟删除操作的时候,大量的元素需要移动. 如图所示,元 ...
- istio in kubernetes (二) -- 部署篇
在 Kubernetes 部署 Istio [demo演示] 可参考官方文档(https://istio.io/latest/zh/docs/setup/install/) ,以部署1.7.4版本作为 ...