观察样例,令f(n)表示n拆分的答案,猜想$f(n)=3f(n-3)$,当$n\le 4$时$f(n)=n$
取3的原因是因为对于给定的$x+y$,当$4<x+y$,显然有$3^{x+y-3}$最大,否则直接取$x+y$即为最大值,也就是给出的递推式

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define P 10
4 int n,ans[10005];
5 void cheng(int k){
6 ans[1]*=k;
7 for(int i=2;i<=ans[0];i++){
8 ans[i]=ans[i]*k+ans[i-1]/P;
9 ans[i-1]%=P;
10 }
11 if (ans[ans[0]]>=P){
12 ans[ans[0]+1]=ans[ans[0]]/P;
13 ans[ans[0]++]%=P;
14 }
15 }
16 int main(){
17 scanf("%d",&n);
18 ans[0]=ans[1]=1;
19 while (n>4){
20 n-=3;
21 cheng(3);
22 }
23 cheng(n);
24 printf("%d\n",ans[0]);
25 for(int i=ans[0];i>max(ans[0]-100,0);i--)printf("%d",ans[i]);
26 }

[bzoj1263]整数划分的更多相关文章

  1. BZOJ1263: [SCOI2006]整数划分

    1263: [SCOI2006]整数划分 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 677  Solved: 332[Submit][Status] ...

  2. 51nod p1201 整数划分

    1201 整数划分 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} {1,5} {2, ...

  3. 2014北大研究生推免机试(校内)-复杂的整数划分(DP进阶)

    这是一道典型的整数划分题目,适合正在研究动态规划的同学练练手,但是和上一个随笔一样,我是在Coursera中评测通过的,没有找到适合的OJ有这一道题(找到的ACMer拜托告诉一声~),这道题考察得较全 ...

  4. 整数划分 (区间DP)

    整数划分(四) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近 ...

  5. nyoj 90 整数划分

    点击打开链接 整数划分 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述 将正整数n表示成一系列正整数之和:n=n1+n2+-+nk,  其中n1≥n2≥-≥nk≥1,k≥ ...

  6. 整数划分 Integer Partition(二)

    本文是整数划分的第二节,主要介绍整数划分的一些性质. 一 先来弥补一下上一篇文章的遗留问题:要求我们所取的 (n=m1+m2+...+mi )中  m1 m2 ... mi连续,比如5=1+4就不符合 ...

  7. 整数划分 Integer Partition(一)

    话说今天百度面试,可能是由于我表现的不太好,面试官显得有点不耐烦,说话的语气也很具有嘲讽的意思,搞得我有点不爽.Whatever,面试中有问到整数划分问题,回答这个问题过程中被面试官搞的不胜其烦,最后 ...

  8. 51nod1201 整数划分

    01背包显然超时.然后就是一道神dp了.dp[i][j]表示j个数组成i的方案数.O(nsqrt(n)) #include<cstdio> #include<cstring> ...

  9. NYOJ-571 整数划分(三)

    此题是个非常经典的题目,这个题目包含了整数划分(一)和整数划分(二)的所有情形,而且还增加了其它的情形,主要是用递归或者说是递推式来解,只要找到了递推式剩下的任务就是找边界条件了,我觉得边界也是非常重 ...

随机推荐

  1. 基于注解实现jackson动态JsonProperty

    基于注解实现jackson动态JsonProperty @JsonProperty 此注解用于属性上,作用是把该属性的名称序列化为另外一个名称,如把trueName属性序列化为name,但是值是固定的 ...

  2. 题解 「ZJOI2018」历史

    题目传送门 Description 九条可怜是一个热爱阅读的女孩子. 这段时间,她看了一本非常有趣的小说,这本小说的架空世界引起了她的兴趣. 这个世界有 \(n\) 个城市,这 \(n\) 个城市被恰 ...

  3. 解决VS2015安装后stdio.h ucrtd.lib等文件无法识别问题,即include+lib环境变量配置

    转载自:http://blog.csdn.net/carl_qi/article/details/51171280 今天突然想在windows上装个 VS2015 玩玩,结果遇到了如下bug: 安装完 ...

  4. 如何快速体验鸿蒙全新声明式UI框架ArkUI?

    HDC2021将于10月22日在东莞松山湖正式开幕,大会将设立Codelab体验专区,超多好玩.有趣的Demo等你体验.想快速入门HarmonyOS?学习HarmonyOS新特性?以下几个Codela ...

  5. Scrum Meeting 0429

    零.说明 日期:2021-4-29 任务:简要汇报两日内已完成任务,计划后两日完成任务 一.进度情况 组员 负责 两日内已完成的任务 后两日计划完成的任务 qsy PM&前端 完成部分后端管理 ...

  6. [软工作业]-软件案例分析-CSDN

    [软工作业]-软件案例分析-CSDN(app) 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业-软件案例分析 我在这个课程的目标是 ...

  7. netty入门实现简单的echo程序

    最近看以往在程序中编写的代码,发现有一个功能是使用socket通讯来实现的,而那个时候使用的是基于bio的阻塞io来实现的,最近在看netty,发现可以使用netty来使用nio的方式来实现,此博客记 ...

  8. Noip模拟59 2021.9.22

    新机房首模拟变倒数 T1 柱状图 关于每一个点可以做出两条斜率分别为$1,-1$的直线, 然后题意转化为移动最少的步数使得所有点都在某一个点的两条直线上 二分出直线的高度,判断条件是尽量让这条直线上部 ...

  9. 期望dp好题选做

    前言: 最近连考两场期望dp的题目,sir说十分板子的题目我竟然一点也不会,而且讲过以后也觉得很不可改.于是开个坑. 1.晚测10 T2 大佬(kat) 明明有\(O(mlog)\)的写法,但是\(m ...

  10. Hadoop的HA(ZooKeeper)安装与部署

    非HA的安装步骤 https://www.cnblogs.com/live41/p/15467263.html 一.部署设定 1.服务器 c1   192.168.100.105    zk.name ...