Gradient Boosted Regression Trees 2
Gradient Boosted Regression Trees 2
Regularization
GBRT provide three knobs to control overfitting: tree structure, shrinkage, and randomization.
Tree Structure
The depth of the individual trees is one aspect of model complexity. The depth of the trees basically control the degree of feature interactions that your model can fit. For example, if you want to capture the interaction between a feature latitude and a feature longitude your trees need a depth of at least two to capture this. Unfortunately, the degree of feature interactions is not known in advance but it is usually fine to assume that it is faily low -- in practise, a depth of 4-6 usually gives the best results. In scikit-learn you can constrain the depth of the trees using the max_depth argument.
Another way to control the depth of the trees is by enforcing a lower bound on the number of samples in a leaf: this will avoid inbalanced splits where a leaf is formed for just one extreme data point. In scikit-learn you can do this using the argument min_samples_leaf. This is effectively a means to introduce bias into your model with the hope to also reduce variance as shown in the example below:
def fmt_params(params):
return ", ".join("{0}={1}".format(key, val) for key, val in params.iteritems())fig = plt.figure(figsize=(8, 5))ax = plt.gca()for params, (test_color, train_color) in [({}, ('#d7191c', '#2c7bb6')),
({'min_samples_leaf': 3},
('#fdae61', '#abd9e9'))]:
est = GradientBoostingRegressor(n_estimators=n_estimators, max_depth=1, learning_rate=1.0)
est.set_params(**params)
est.fit(X_train, y_train)
test_dev, ax = deviance_plot(est, X_test, y_test, ax=ax, label=fmt_params(params),
train_color=train_color, test_color=test_color)
ax.annotate('Higher bias', xy=(900, est.train_score_[899]), xycoords='data',
xytext=(600, 0.3), textcoords='data',
arrowprops=dict(arrowstyle="->", connectionstyle="arc"),
)ax.annotate('Lower variance', xy=(900, test_dev[899]), xycoords='data',
xytext=(600, 0.4), textcoords='data',
arrowprops=dict(arrowstyle="->", connectionstyle="arc"),
)plt.legend(loc='upper right')
Shrinkage
The most important regularization technique for GBRT is shrinkage: the idea is basically to do slow learning by shrinking the predictions of each individual tree by some small scalar, the learning_rate. By doing so the model has to re-enforce concepts. A lower learning_rate requires a higher number of n_estimatorsto get to the same level of training error -- so its trading runtime against accuracy.
fig = plt.figure(figsize=(8, 5))ax = plt.gca()for params, (test_color, train_color) in [({}, ('#d7191c', '#2c7bb6')),
({'learning_rate': 0.1},
('#fdae61', '#abd9e9'))]:
est = GradientBoostingRegressor(n_estimators=n_estimators, max_depth=1, learning_rate=1.0)
est.set_params(**params)
est.fit(X_train, y_train)
test_dev, ax = deviance_plot(est, X_test, y_test, ax=ax, label=fmt_params(params),
train_color=train_color, test_color=test_color)
ax.annotate('Requires more trees', xy=(200, est.train_score_[199]), xycoords='data',
xytext=(300, 1.0), textcoords='data',
arrowprops=dict(arrowstyle="->", connectionstyle="arc"),
)ax.annotate('Lower test error', xy=(900, test_dev[899]), xycoords='data',
xytext=(600, 0.5), textcoords='data',
arrowprops=dict(arrowstyle="->", connectionstyle="arc"),
)plt.legend(loc='upper right')
Stochastic Gradient Boosting
Similar to RandomForest, introducing randomization into the tree building process can lead to higher accuracy. Scikit-learn provides two ways to introduce randomization: a) subsampling the training set before growing each tree (subsample) and b) subsampling the features before finding the best split node (max_features). Experience showed that the latter works better if there is a sufficient large number of features (>30). One thing worth noting is that both options reduce runtime.
Below we show the effect of using subsample=0.5, ie. growing each tree on 50% of the training data, on our toy example:
fig = plt.figure(figsize=(8, 5))ax = plt.gca()for params, (test_color, train_color) in [({}, ('#d7191c', '#2c7bb6')),
({'learning_rate': 0.1, 'subsample': 0.5},
('#fdae61', '#abd9e9'))]:
est = GradientBoostingRegressor(n_estimators=n_estimators, max_depth=1, learning_rate=1.0,
random_state=1)
est.set_params(**params)
est.fit(X_train, y_train)
test_dev, ax = deviance_plot(est, X_test, y_test, ax=ax, label=fmt_params(params),
train_color=train_color, test_color=test_color)
ax.annotate('Even lower test error', xy=(400, test_dev[399]), xycoords='data',
xytext=(500, 0.5), textcoords='data',
arrowprops=dict(arrowstyle="->", connectionstyle="arc"),
)est = GradientBoostingRegressor(n_estimators=n_estimators, max_depth=1, learning_rate=1.0,
subsample=0.5)est.fit(X_train, y_train)test_dev, ax = deviance_plot(est, X_test, y_test, ax=ax, label=fmt_params({'subsample': 0.5}),
train_color='#abd9e9', test_color='#fdae61', alpha=0.5)ax.annotate('Subsample alone does poorly', xy=(300, test_dev[299]), xycoords='data',
xytext=(250, 1.0), textcoords='data',
arrowprops=dict(arrowstyle="->", connectionstyle="arc"),
)plt.legend(loc='upper right', fontsize='small')
Hyperparameter tuning
We now have introduced a number of hyperparameters -- as usual in machine learning it is quite tedious to optimize them. Especially, since they interact with each other (learning_rate and n_estimators, learning_rate and subsample, max_depth and max_features).
We usually follow this recipe to tune the hyperparameters for a gradient boosting model:
Choose
lossbased on your problem at hand (ie. target metric)Pick
n_estimatorsas large as (computationally) possible (e.g. 3000).Tune
max_depth,learning_rate,min_samples_leaf, andmax_featuresvia grid search.Increase
n_estimatorseven more and tunelearning_rateagain holding the other parameters fixed.
Scikit-learn provides a convenient API for hyperparameter tuning and grid search:
from sklearn.grid_search import GridSearchCVparam_grid = {'learning_rate': [0.1, 0.05, 0.02, 0.01],
'max_depth': [4, 6],
'min_samples_leaf': [3, 5, 9, 17],
# 'max_features': [1.0, 0.3, 0.1] ## not possible in our example (only 1 fx)
}est = GradientBoostingRegressor(n_estimators=3000)# this may take some minutesgs_cv = GridSearchCV(est, param_grid, n_jobs=4).fit(X_train, y_train)# best hyperparameter settinggs_cv.best_params_
Out:{'learning_rate': 0.05, 'max_depth': 6, 'min_samples_leaf': 5}
Use-case: California Housing
This use-case study shows how to apply GBRT to a real-world dataset. The task is to predict the log median house value for census block groups in California. The dataset is based on the 1990 censues comprising roughly 20.000 groups. There are 8 features for each group including: median income, average house age, latitude, and longitude. To be consistent with [Hastie et al., The Elements of Statistical Learning, Ed2] we use Mean Absolute Error as our target metric and evaluate the results on an 80-20 train-test split.
import pandas as pdfrom sklearn.datasets.california_housing import fetch_california_housingcal_housing = fetch_california_housing()# split 80/20 train-testX_train, X_test, y_train, y_test = train_test_split(cal_housing.data,
np.log(cal_housing.target),
test_size=0.2,
random_state=1)names = cal_housing.feature_names
Some of the aspects that make this dataset challenging are: a) heterogenous features (different scales and distributions) and b) non-linear feature interactions (specifically latitude and longitude). Furthermore, the data contains some extreme values of the response (log median house value) -- such a dataset strongly benefits from robust regression techniques such as huberized loss functions.
Below you can see histograms for some of the features and the response. You can see that they are quite different: median income is left skewed, latitude and longitude are bi-modal, and log median house value is right skewed.
import pandas as pdX_df = pd.DataFrame(data=X_train, columns=names)X_df['LogMedHouseVal'] = y_train_ = X_df.hist(column=['Latitude', 'Longitude', 'MedInc', 'LogMedHouseVal'])
est = GradientBoostingRegressor(n_estimators=3000, max_depth=6, learning_rate=0.04, loss='huber', random_state=0)est.fit(X_train, y_train)
GradientBoostingRegressor(alpha=0.9, init=None, learning_rate=0.04,
loss='huber', max_depth=6, max_features=None,
max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2,
n_estimators=3000, random_state=0, subsample=1.0, verbose=0,
warm_start=False)
from sklearn.metrics import mean_absolute_errormae = mean_absolute_error(y_test, est.predict(X_test))print('MAE: %.4f' % mae)
Feature importance
Often features do not contribute equally to predict the target response. When interpreting a model, the first question usually is: what are those important features and how do they contributing in predicting the target response?
A GBRT model derives this information from the fitted regression trees which intrinsically perform feature selection by choosing appropriate split points. You can access this information via the instance attribute est.feature_importances_.
# sort importancesindices = np.argsort(est.feature_importances_)# plot as bar chartplt.barh(np.arange(len(names)), est.feature_importances_[indices])plt.yticks(np.arange(len(names)) + 0.25, np.array(names)[indices])_ = plt.xlabel('Relative importance')
Partial dependence
Partial dependence plots show the dependence between the response and a set of features, marginalizing over the values of all other features. Intuitively, we can interpret the partial dependence as the expected response as a function of the features we conditioned on.
The plot below contains 4 one-way partial depencence plots (PDP) each showing the effect of an idividual feature on the repsonse. We can see that median incomeMedInc has a linear relationship with the log median house value. The contour plot shows a two-way PDP. Here we can see an interesting feature interaction. It seems that house age itself has hardly an effect on the response but when AveOccup is small it has an effect (the older the house the higher the price).
from sklearn.ensemble.partial_dependence import plot_partial_dependencefeatures = ['MedInc', 'AveOccup', 'HouseAge', 'AveRooms',
('AveOccup', 'HouseAge')]fig, axs = plot_partial_dependence(est, X_train, features,
feature_names=names, figsize=(8, 6))

Scikit-learn provides a convenience function to create such plots: sklearn.ensemble.partial_dependence.plot_partial_dependence or a low-level function that you can use to create custom partial dependence plots (e.g. map overlays or 3d
Gradient Boosted Regression Trees 2的更多相关文章
- Facebook Gradient boosting 梯度提升 separate the positive and negative labeled points using a single line 梯度提升决策树 Gradient Boosted Decision Trees (GBDT)
https://www.quora.com/Why-do-people-use-gradient-boosted-decision-trees-to-do-feature-transform Why ...
- Gradient Boosted Regression
3.2.4.3.6. sklearn.ensemble.GradientBoostingRegressor class sklearn.ensemble.GradientBoostingRegress ...
- Gradient Boosting, Decision Trees and XGBoost with CUDA ——GPU加速5-6倍
xgboost的可以参考:https://xgboost.readthedocs.io/en/latest/gpu/index.html 整体看加速5-6倍的样子. Gradient Boosting ...
- Parallel Gradient Boosting Decision Trees
本文转载自:链接 Highlights Three different methods for parallel gradient boosting decision trees. My algori ...
- 关于Additive Ensembles of Regression Trees模型的快速打分预测
一.论文<QuickScorer:a Fast Algorithm to Rank Documents with Additive Ensembles of Regression Trees&g ...
- 机器学习技法:11 Gradient Boosted Decision Tree
Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...
- 机器学习技法笔记:11 Gradient Boosted Decision Tree
Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...
- 【Gradient Boosted Decision Tree】林轩田机器学习技术
GBDT之前实习的时候就听说应用很广,现在终于有机会系统的了解一下. 首先对比上节课讲的Random Forest模型,引出AdaBoost-DTree(D) AdaBoost-DTree可以类比Ad ...
- [11-3] Gradient Boosting regression
main idea:用adaboost类似的方法,选出g,然后选出步长 Gredient Boosting for regression: h控制方向,eta控制步长,需要对h的大小进行限制 对(x, ...
随机推荐
- iOS 加载图片选择imageNamed 方法还是 imageWithContentsOfFile?
Apple官方的文档为生成一个UIImage对象提供了两种方法: 1. imageNamed,其参数为图片的名字: 2. imageWithContentsOfFile,其参数也是图片文件的路径. ...
- MYSQL的主从和主主复制模式
一.复制介绍 MySQL支持单向.异步复制,复制过程中一个服务器充当主服务器,而一个或多个其它服务器充当从服务器.主服务器将更新写入二进制日志文件,并维护文件的一个索引以跟踪日志循环.这些日志可以记录 ...
- HDU 2222:Keywords Search(AC自动机模板)
http://acm.hdu.edu.cn/showproblem.php?pid=2222 KMP是单模式串匹配的算法,而AC自动机是用于多模式串匹配的算法.主要由Trie和KMP的思想构成. 题意 ...
- HDU 3853:LOOPS(概率DP)
http://acm.split.hdu.edu.cn/showproblem.php?pid=3853 LOOPS Problem Description Akemi Homura is a M ...
- ACM题目————图的广度优先搜索
题目描述 图的广度优先搜索类似于树的按层次遍历,即从某个结点开始,先访问该结点,然后访问该结点的所有邻接点,再依次访问各邻接 点的邻接点.如此进行下去,直到所有的结点都访问为止.在该题中,假定所有的结 ...
- IOS中两个view的切换
在ios中,rootview为PassWordViewController,secondview为SecondViewController,实现在rootview中听过一个跳转按钮实现跳转到secon ...
- PHP下的购物车
导航 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta h ...
- 逆序数还原(FZU)
逆序数还原 Accept: 244 Submit: 451 Time Limit: 1000 mSec Memory Limit : 32768 KB Problem Description 有一段时 ...
- 这题实在不知道起啥名好了 分类: sdutOJ 2015-06-22 17:17 19人阅读 评论(0) 收藏
这题实在不知道起啥名好了 Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 懒得想背景故事了,开门见山. 有一个长度为n的整数数列A ...
- CaronteFX插件简介
CaronteFX是一个基于烘培的unity物理增强插件,而不是实时的. 也正因为如此可以在Cutscene中使用,而不用切到maya之类得到软件里去做,以提高效率 Adam demo里一些角色布料( ...