MATLAB画ROC曲线,及计算AUC值
根据决策值和真实标签画ROC曲线,同时计算AUC的值

步骤:
- 根据决策值和真实标签画ROC曲线,同时计算AUC的值:
- 计算算法的决策函数值deci
- 根据决策函数值deci对真实标签y进行降序排序,得到新的排序$roc_y$
- 根据$roc_y$分别对正负类样本进行累积分布$stack_x$,$stack_y$
- 根据$stack_x$,$stack_y$计算RUC的值
- \[AUC = \sum_{i=2}^{n}(stack_x(i)-stack_x(i-1))*stack_y(i) \]
- 分别以$stack_x$,$stack_y$作为横坐标和纵坐标,画出RUC图
function auc = roc_curve(deci,label_y) %%deci=wx+b, label_y, true label
[val,ind] = sort(deci,'descend');
roc_y = label_y(ind);
stack_x = cumsum(roc_y == -1)/sum(roc_y == -1);
stack_y = cumsum(roc_y == 1)/sum(roc_y == 1);
auc = sum((stack_x(2:length(roc_y),1)-stack_x(1:length(roc_y)-1,1)).*stack_y(2:length(roc_y),1)) %Comment the above lines if using perfcurve of statistics toolbox
%[stack_x,stack_y,thre,auc]=perfcurve(label_y,deci,1);
plot(stack_x,stack_y);
xlabel('False Positive Rate');
ylabel('True Positive Rate');
title(['ROC curve of (AUC = ' num2str(auc) ' )']);
end
代码来自林智仁网站:https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#roc_curve_for_binary_svm
function auc = plotroc(y,x,params)
%plotroc draws the recevier operating characteristic(ROC) curve.
%
%auc = plotroc(training_label, training_instance [, libsvm_options -v cv_fold])
% Use cross-validation on training data to get decision values and plot ROC curve.
%
%auc = plotroc(testing_label, testing_instance, model)
% Use the given model to predict testing data and obtain decision values
% for ROC
%
% Example:
%
% load('heart_scale.mat');
% plotroc(heart_scale_label, heart_scale_inst,'-v 5');
%
% [y,x] = libsvmread('heart_scale');
% model = svmtrain(y,x);
% plotroc(y,x,model);
rand('state',0); % reset random seed
if nargin < 2
help plotroc
return
elseif isempty(y) | isempty(x)
error('Input data is empty');
elseif sum(y == 1) + sum(y == -1) ~= length(y)
error('ROC is only applicable to binary classes with labels 1, -1'); % check the trainig_file is binary
elseif exist('params') && ~ischar(params)
model = params;
[predict_label,mse,deci] = svmpredict(y,x,model) ;% the procedure for predicting
auc = roc_curve(deci*model.Label(1),y);
else
if ~exist('params')
params = [];
end
[param,fold] = proc_argv(params); % specify each parameter
if fold <= 1
error('The number of folds must be greater than 1');
else
[deci,label_y] = get_cv_deci(y,x,param,fold); % get the value of decision and label after cross-calidation
auc = roc_curve(deci,label_y); % plot ROC curve
end
end
end function [resu,fold] = proc_argv(params)
resu=params;
fold=5;
if ~isempty(params) && ~isempty(regexp(params,'-v'))
[fold_val,fold_start,fold_end] = regexp(params,'-v\s+\d+','match','start','end');
if ~isempty(fold_val)
[temp1,fold] = strread([fold_val{:}],'%s %u');
resu([fold_start:fold_end]) = [];
else
error('Number of CV folds must be specified by "-v cv_fold"');
end
end
end function [deci,label_y] = get_cv_deci(prob_y,prob_x,param,nr_fold)
l=length(prob_y);
deci = ones(l,1);
label_y = ones(l,1);
rand_ind = randperm(l);
for i=1:nr_fold % Cross training : folding
test_ind=rand_ind([floor((i-1)*l/nr_fold)+1:floor(i*l/nr_fold)]');
train_ind = [1:l]';
train_ind(test_ind) = [];
model = svmtrain(prob_y(train_ind),prob_x(train_ind,:),param);
[predict_label,mse,subdeci] = svmpredict(prob_y(test_ind),prob_x(test_ind,:),model);
deci(test_ind) = subdeci.*model.Label(1);
label_y(test_ind) = prob_y(test_ind);
end
end function auc = roc_curve(deci,label_y) %%deci=wx+b, label_y, true label
[val,ind] = sort(deci,'descend');
roc_y = label_y(ind);
stack_x = cumsum(roc_y == -1)/sum(roc_y == -1);
stack_y = cumsum(roc_y == 1)/sum(roc_y == 1);
auc = sum((stack_x(2:length(roc_y),1)-stack_x(1:length(roc_y)-1,1)).*stack_y(2:length(roc_y),1)) %Comment the above lines if using perfcurve of statistics toolbox
%[stack_x,stack_y,thre,auc]=perfcurve(label_y,deci,1);
plot(stack_x,stack_y);
xlabel('False Positive Rate');
ylabel('True Positive Rate');
title(['ROC curve of (AUC = ' num2str(auc) ' )']);
end
调用:
[y,x] = libsvmread('heart_scale.txt');
model = svmtrain(y,x);
plotroc(y,x,model);
MATLAB画ROC曲线,及计算AUC值的更多相关文章
- scikit-learn机器学习(二)逻辑回归进行二分类(垃圾邮件分类),二分类性能指标,画ROC曲线,计算acc,recall,presicion,f1
数据来自UCI机器学习仓库中的垃圾信息数据集 数据可从http://archive.ics.uci.edu/ml/datasets/sms+spam+collection下载 转成csv载入数据 im ...
- 使用Python画ROC曲线以及AUC值
from:http://kubicode.me/2016/09/19/Machine%20Learning/AUC-Calculation-by-Python/ AUC介绍 AUC(Area Unde ...
- ROC 曲线,以及AUC计算方式
ROC曲线: roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性. ROC曲线的横轴: 负正类率(false ...
- ROC曲线的计算
1.ROC曲线简介 在评价分类模型时,会用到ROC(receiver operating characteristic)曲线.ROC曲线可用来评价二元分类器( binary classifier)的优 ...
- PR曲线 ROC曲线的 计算及绘制
在linear model中,我们对各个特征线性组合,得到linear score,然后确定一个threshold,linear score < threshold 判为负类,linear sc ...
- 一个画ROC曲线的封装包
Draw_ROC_Curves This is a python file which is used for drawing ROC curves -f : assign file name -t ...
- 机器学习常见的几种评价指标:精确率(Precision)、召回率(Recall)、F值(F-measure)、ROC曲线、AUC、准确率(Accuracy)
原文链接:https://blog.csdn.net/weixin_42518879/article/details/83959319 主要内容:机器学习中常见的几种评价指标,它们各自的含义和计算(注 ...
- 【分类模型评判指标 二】ROC曲线与AUC面积
转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80499031 略有改动,仅供个人学习使用 简介 ROC曲线与AUC面积均是用来 ...
- [机器学习]-分类问题常用评价指标、混淆矩阵及ROC曲线绘制方法
分类问题 分类问题是人工智能领域中最常见的一类问题之一,掌握合适的评价指标,对模型进行恰当的评价,是至关重要的. 同样地,分割问题是像素级别的分类,除了mAcc.mIoU之外,也可以采用分类问题的一些 ...
随机推荐
- 泛型之Dictionary
Dictionary<string, string>是一个泛型 他本身有集合的功能有时候可以把它看成数组 他的结构是这样的:Dictionary<[key], [value]> ...
- 5.5.3使用terminfo功能标志
当使用terminfo时,需要做的第一件事就是调用函数setupterm来设置终端类型.这将为当前的终端类型初始化一个TERMINAL结构.然后,你就可以查看当前终端的功能标志并使用他们的功能了. # ...
- The CLR's Execution Model
the native code generator tool:NGen.exe optimization tool:MPGO.exe 所有类型最终都继承自System.Object.则所有类型都有如下 ...
- CALayer总结(一)
1.geometryFlipped 设置为yes,则子图层或者子视图本来相对于左上角放置 改为 相对于左下角放置: 2.contents 3.contentGravity: kCAGravityC ...
- observer观察者模式
观察者模式(有时又被称为发布-订阅Subscribe>模式,观察者模式定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象,这个主题对象在状态上发生变化时,会通知所有观察者对象,让 ...
- PHP 全局变量 $_SERVER
$_SERVER['SERVER_ADDR'] 当前运行脚本所在的服务器的 IP 地址. $_SERVER['REQUEST_TIME'] 请求开始时的时间戳.从 PHP 5.1.0 起可 ...
- css+JS实现遮罩弹框
<!DOCTYPE html> <html> <head> <meta charset=" utf-8"> <meta nam ...
- Java字符串处理函数
substring() 它有两种形式,第一种是:String substring(int startIndex)第二种是:String substring(int startIndex,int end ...
- Python学习笔记7—集合
set 拥有类似 dict 的特点:可以用{}花括号来定义:其中的元素没有序列,也就是是非序列类型的数据;而且,set 中的元素不可重复,这就类似 dict 的键. >>> s1 = ...
- svn提交代码的原则
[1]先更新在提交 [2]多提交 [3]不要提交不能通过编译的代码 [4]每次提交必须书写明晰的标注 [5]提交时注意不要提交本地自动生成的文件 [6]不要提交自己不明白的代码 [7]慎用锁定功能