#include<cstdio>
#include<iostream>
#include<cstring>
#define M 100009
#define inf 2139062143
using namespace std;
int n,m,S,tot,cnt=,T,ans,head[],d[],q[*M],next[*M],u[*M],v[*M],a[*M][];
bool bfs()
{
memset(d,,sizeof(d));
int h=,t=;
q[]=S;
d[S]=;
for(;h<t;)
{
h++;
int p=q[h];
for(int i=head[p];i;i=next[i])
if(!d[u[i]]&&v[i])
{
d[u[i]]=d[p]+;
if(d[T])
return ;
t++;
q[t]=u[i];
}
}
return ;
}
int dinic(int s,int f)
{
if(s==T)
return f;
int rest=f;
for(int i=head[s];i&&rest;i=next[i])
if(v[i]&&d[u[i]]==d[s]+)
{
int now=dinic(u[i],min(rest,v[i]));
if(!now)
d[u[i]]=;
v[i]-=now;
v[i^]+=now;
rest-=now;
}
return f-rest;
}
void jia1(int a1,int a2,int a3)
{
cnt++;
next[cnt]=head[a1];
head[a1]=cnt;
u[cnt]=a2;
v[cnt]=a3;
return;
}
void jia(int a1,int a2,int a3)
{
jia1(a1,a2,a3);
jia1(a2,a1,);
return;
}
int main()
{
int s;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
scanf("%d%d%d",&a[i][],&a[i][],&a[i][]);
scanf("%d%d%d",&S,&T,&s);
cnt=;
memset(head,,sizeof(head));
for(int i=;i<=m;i++)
if(a[i][]>s)
{
jia(a[i][],a[i][],);
jia(a[i][],a[i][],);
}
for(;bfs();)
ans+=dinic(S,inf);
cnt=;
memset(head,,sizeof(head));
for(int i=;i<=m;i++)
if(a[i][]<s)
{
jia(a[i][],a[i][],);
jia(a[i][],a[i][],);
}
for(;bfs();)
ans+=dinic(S,inf);
printf("%d\n",ans);
return ;
}

两遍网络流,把比他小的边建起来,最大流就是要删的边数,最大生成树同理。

bzoj 2561: 最小生成树的更多相关文章

  1. BZOJ 2561: 最小生成树(最小割)

    U,V能在最小(大)生成树上,当且仅当权值比它小(大)的边无法连通U,V. 两次最小割就OK了. --------------------------------------------------- ...

  2. BZOJ 2561 最小生成树 | 网络流 最小割

    链接 BZOJ 2561 题解 用Kruskal算法的思路来考虑,边(u, v, L)可能出现在最小生成树上,就是说对于所有边权小于L的边,u和v不能连通,即求最小割: 对于最大生成树的情况也一样.容 ...

  3. BZOJ 2561 最小生成树(最大流)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2561 题意:给定一个边带正权的连通无向图G= (V,E),其中N=|V|,M=|E|,N ...

  4. bzoj 2561: 最小生成树【最小割】

    看错题了以为多组询问吓得不行-- 其实还挺好想的,就是数据范围一点都不网络流.把U作为s,V作为t,以最小生成树为例,(U,V,L)要在最小生成树上,就要求所有边权比L小的边不能连通(U,V)所在的联 ...

  5. BZOJ 2561: 最小生成树【最小割/最大流】

    Description 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v), ...

  6. 【BZOJ】2561: 最小生成树【网络流】【最小割】

    2561: 最小生成树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2685  Solved: 1253[Submit][Status][Discu ...

  7. BZOJ 1016 最小生成树计数

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  8. BZOJ 2521 最小生成树(最小割)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2521 题意:每次能增加一条边的权值1,求最小代价让一条边保证在最小生成树里 思路:如果两个点中有环, ...

  9. BZOJ 1016--[JSOI2008]最小生成树计数(kruskal&搜索)

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7429  Solved: 3098[Submit][St ...

随机推荐

  1. POJ2676,HDU4069解决数独的两种实现:DFS、DLX

    搜索实现:解决数独有两种思考策略,一种是枚举当前格能填的数字的种数,这里有一优化策略就是先搜索能填入种数小的格子:另一种是考虑处理某一行(列.宫)时,对于某一个没用过的数字,若该行(列.宫)只有一个可 ...

  2. 软技能:十步学习法 (zhuan)

    http://www.gyzhao.me/2016/11/07/Ten-Step-Learning-Method/ ****************************************** ...

  3. 项目开发中遇到的extjs常见问题

    事件触发机制 l 给某一个控件添加事件. obj.addEvents( {search : true }); l 给某一个事件添加处理函数 n 给一个对象或变量添加监听及对应得处理,可以在创建时,通过 ...

  4. 深入理解Sqlserver索引

    1. Sqlserver中索引分为聚集索引和非聚集索引: 聚集索引:表中数据的物理存储的顺序与索引顺序完全相同(字典的按拼音查法),检索效率比非聚集索引高,但对数据更新影响较大. 非聚集索引:表中数据 ...

  5. Convention插件 struts零配置

    http://blog.csdn.net/spyjava/article/details/13631961系列课程使用 注解:http://www.yiibai.com/struts_2/struts ...

  6. 能源项目xml文件标签释义--<context:component-scan>

    <context:component-scan base-package="com.xindatai.ibs" use-default-filters="false ...

  7. spring来了-04-AOP

    概述 aspect object programming 面向切面编程 功能:可以实现“业务代码”与“关注点代码”分离 关注点代码:就是指重复执行的代码 业务代码:核心的业务功能 运行期间,执行核心业 ...

  8. R语言自带数据包

    向量 euro    #欧元汇率,长度为11,每个元素都有命名 landmasses    #48个陆地的面积,每个都有命名 precip    #长度为70的命名向量 rivers    #北美14 ...

  9. [BI基础] 一些不得不了解的概念

    0.Hadoop hadoop主要是用来对海量数据进行存储和计算的. 它本身是一个分布式系统,核心由分布式文件系统hdfs,和分布式计算框架mapreduce组成,在存储和计算时能够发挥出集群中每台机 ...

  10. ubuntu下python3安装scrapy,OpenSSL

    环境:ubuntu 16.04  ,  python3.5.1+ 安装顺序如下: sudo apt-get install build-essential sudo apt-get install p ...