BZOJ3156 防御准备 题解
令 \(S_{i} =\sum\limits_{j=1}^{i}j\) , \(f_{i}\) 为处理到第 \(i\) 个位置放置守卫塔的最小花费。
观察题意,容易得到在\((1 \le j \le i-1)\) 时,有
\(f_{i}= min\left \{ f_{j}+\sum\limits_{k=j+1}^{i-1} (i-k)+a_{i} \right \}\) ①
\(f_{i}= min\left \{ f_{j}+\sum\limits_{k=j+1}^{i-1} (i-k) \right \} +a_{i}\) ②
\(f_{i}= min\left \{ f_{j}+\sum\limits_{k=j+1}^{i-1}i-\sum\limits_{k=j+1}^{i-1}k \right \} +a_{i}\) ③
\(f_{i}= min\left \{ f_{j}+(i-j-1)*i-\sum\limits_{k=j+1}^{i-1}k \right \} +a_{i}\) ④
\(f_{i}= min\left \{ f_{j}+(i-j-1)*i-(S_{i-1}-S_{j} ) \right \} +a_{i}\) ⑤
此时若存在 \(k<j\) ,且 \(j\) 比 \(k\) 更优时,则 \(f_{j}+(i-j-1)*i-(S_{i-1}-S_{j} )<f_{k}+(i-k-1)*i-(S_{i-1}-S_{k} )\) ⑥ ,化简得 $\frac{f_{j}-f_{k}+S_{j}-S_{k}}{j-k}<i $ ⑦。
接着维护一个单调队列,复杂度 \(O(n\times \log_{}{n} )\)
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define endl '\n'
ll a[1000001],sum[1000001],f[1000001],q[1000001];
double work(ll x,ll y)//注意精度问题
{
return 1.0*(f[y]-f[x]+sum[y]-sum[x])/(y-x);
}
int main()
{
ll n,i,l=0,r=0;
cin>>n;
for(i=1;i<=n;i++)
{
cin>>a[i];
sum[i]=sum[i-1]+i;
}
for(i=1;i<=n;i++)
{
while(l<r&&work(q[l],q[l+1])<i)
{
l++;
}
f[i]=f[q[l]]+(i-q[l]-1)*i-(sum[i-1]-sum[q[l]])+a[i];//直接套公式⑤
while(l<r&&work(q[r-1],q[r])>work(q[r],i))
{
r--;
}
r++;
q[r]=i;
}
cout<<f[n];
return 0;
}
写在最后:十年OI一场空,不开long long见祖宗。
BZOJ3156 防御准备 题解的更多相关文章
- BZOJ3156: 防御准备
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 442 Solved: 210[Submit][Status] Descript ...
- bzoj3156防御准备
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1349 Solved: 605[Submit][Status][Discuss ...
- BZOJ3156 防御准备 动态规划 斜率优化
原文链接http://www.cnblogs.com/zhouzhendong/p/8688187.html 题目传送门 - BZOJ3156 题意 长为$n$的序列$A$划分,设某一段为$[i,j] ...
- bzoj3156防御准备 斜率优化dp
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2279 Solved: 959[Submit][Status][Discuss ...
- BZOJ3156 防御准备(动态规划+斜率优化)
设f[i]为在i放置守卫塔时1~i的最小花费.那么显然f[i]=min(f[j]+(i-j)*(i-j-1)/2)+a[i]. 显然这是个斜率优化入门题.将不与i.j同时相关的提出,得f[i]=min ...
- BZOJ3156: 防御准备 【斜率优化dp】
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2207 Solved: 933 [Submit][Status][Discu ...
- [BZOJ3156]防御准备(斜率优化DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP
- bzoj3156 防御准备 - 斜率优化
Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sample Input 102 3 ...
- 2018.09.29 bzoj3156: 防御准备(斜率优化dp)
传送门 斜率dp经典题目. 然而算斜率的时候并没有注意到下标的平方会爆int于是咕咕*2. 这道题我用了两个数组来表示状态. f[i]f[i]f[i]表示最后i个位置倒数第i个放木偶的最优值. g[i ...
- BZOJ3156 防御准备 斜率优化dp
Description Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sampl ...
随机推荐
- python常见面试题讲解(五)质数因子
题目描述 功能:输入一个正整数,按照从小到大的顺序输出它的所有质因子(重复的也要列举)(如180的质因子为2 2 3 3 5 ) 最后一个数后面也要有空格 输入描述: 输入一个long型整数 输出描述 ...
- configmap 和 secret 概述
本篇文章是对 configmap 和 secret 的一个总结,详细信息可看 这里 1. configmap 和 secret 概述 在 container 的 image 中可通过 ENTRYPOI ...
- 超全面总结Vue面试知识点,助力金三银四
前言 本文会对Vue中一些常见的重要知识点以及框架原理进行整理汇总,意在帮助作者以及读者自测Vue的熟练度以及方便查询与复习.金三银四的到来,想必vue会是很多面试官的重点考核内容,希望小伙伴们读完本 ...
- SSM整合 - 环境配置
pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="htt ...
- 什么是 doris,为什么几乎国内大厂都会使用它
转载至我的博客 https://www.infrastack.cn ,公众号:架构成长指南 今天给各位分享一个非常牛的实时分析型数据库Apache Doris,几乎国内的一二线大厂都在使用它做数据分析 ...
- [转帖]TiDB 数据库的调度
https://docs.pingcap.com/zh/tidb/stable/tidb-scheduling#%E4%BF%A1%E6%81%AF%E6%94%B6%E9%9B%86 PD (Pla ...
- [转帖] Linux命令拾遗-查看系统信息
https://www.cnblogs.com/codelogs/p/16060714.html 简介# 作为一名程序员,有时需要关注自己的进程运行在什么样的软硬件环境里,比如几核cpu.固态硬盘还是 ...
- [转帖]Python连接Oracle数据库进行数据处理操作
https://www.dgrt.cn/a/2259443.html?action=onClick 解决以下问题: Python连接Oracle数据库,并查询.提取Oracle数据库中数据? 通过Py ...
- [转帖]Linux 学习笔记: shell中${} 的用法,删除&替换
Linux 学习笔记: shell中${} 的用法,删除&替换 字符串的删除 echo${i##*/} 删除 / 前的所有内容 ## 删除 tt=$i echo{tt:22} #取的22位以后 ...
- [转帖]Linux 防火墙开放特定端口 (iptables)
查看状态: iptables -L -n 下面添加对特定端口开放的方法: 使用iptables开放如下端口 /sbin/iptables -I INPUT -p tcp --dport 8000 -j ...