题目

有一个大小为\(n\)的背包,有\(n\)种物品,

第\(i\)种物品的大小为\(i\),且有\(i\)个,

求装满这个背包的方案数

\(n\leq 10^5\)


分析

直接多重背包会有问题,考虑根号分治,

对于大小\(\leq \sqrt n\)的物品,

其实可以用前缀和优化多重背包,因为大小为\(i\)

对于大小\(> \sqrt n\)的物品,设\(g[i][j]\)表示选了\(i\)种物品容量为\(j\)的方案数,

考虑整体物品加1或者给背包新加入大小为\(\sqrt n+1\)的物品,即

\(g[i][j]=g[i][j-i]+g[i-1][j-\sqrt n-1]\)

合并两个背包即可


代码

#include <cstdio>
#include <cctype>
#include <cmath>
#define rr register
using namespace std;
const int N=100011,mod=23333333;
int f[2][N],g[2][N],s[N],n,bl,ans;
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
signed main(){
scanf("%d",&n),bl=sqrt(n),f[0][0]=1;
for (rr int i=1;i<=bl;++i){
for (rr int j=0;j<i;++j) s[j]=0;
for (rr int j=0;j<=n;++j){
f[i&1][j]=mo(f[(i&1)^1][j],s[j%i]);
s[j%i]=mo(s[j%i],f[(i&1)^1][j]);
if (j>=i*i) s[j%i]=mo(s[j%i],mod-f[(i&1)^1][j-i*i]);
}
}
g[0][0]=1,ans=f[bl&1][n];
for (rr int i=1;i<=bl;++i){
for (rr int j=0;j<i;++j) g[i&1][j]=0;
for (rr int j=i;j<=n;++j){
g[i&1][j]=g[i&1][j-i];
if (j>bl) g[i&1][j]=mo(g[i&1][j],g[(i&1)^1][j-bl-1]);
}
for (rr int j=i;j<=n;++j) ans=mo(ans,1ll*f[bl&1][n-j]*g[i&1][j]%mod);
}
return !printf("%d",ans);
}

#根号分治,背包#51nod 1597 有限背包计数问题 LOJ 6089 小Y的背包计数问题的更多相关文章

  1. LOJ #6089. 小 Y 的背包计数问题

    LOJ #6089. 小 Y 的背包计数问题 神仙题啊orz. 首先把数分成\(<=\sqrt n\)的和\(>\sqrt n\)的两部分. \(>\sqrt n\)的部分因为最多选 ...

  2. LOJ#6089 小 Y 的背包计数问题 - DP精题

    题面 题解 (本篇文章深度剖析,若想尽快做出题的看官可以参考知名博主某C202044zxy的这篇题解:https://blog.csdn.net/C202044zxy/article/details/ ...

  3. loj 6089 小 Y 的背包计数问题——分类进行的背包

    题目:https://loj.ac/problem/6089 直接多重背包,加上分剩余类的前缀和还是n^2的. 但可发现当体积>sqrt(n)时,个数的限制形同虚设,且最多有sqrt(n)个物品 ...

  4. LOJ 6089 小Y的背包计数问题 —— 前缀和优化DP

    题目:https://loj.ac/problem/6089 对于 i <= √n ,设 f[i][j] 表示前 i 种,体积为 j 的方案数,那么 f[i][j] = ∑(1 <= k ...

  5. 【LOJ6089】小Y的背包计数问题(动态规划)

    [LOJ6089]小Y的背包计数问题(动态规划) 题面 LOJ 题解 神仙题啊. 我们分开考虑不同的物品,按照编号与\(\sqrt n\)的关系分类. 第一类:\(i\le \sqrt n\) 即需要 ...

  6. 题解 51nod 1597 有限背包计数问题

    题目传送门 题目大意 给出 \(n\),第 \(i\) 个数有 \(i\) 个,问凑出 \(n\) 的方案数. \(n\le 10^5\) 思路 呜呜呜,傻掉了... 首先想到根号分治,分别考虑 \( ...

  7. LOJ6089 小Y的背包计数问题(根号优化背包)

    Solutioon 这道题利用根号分治可以把复杂度降到n根号n级别. 我们发现当物品体积大与根号n时,就是一个完全背包,换句话说就是没有了个数限制. 进一步我们发现,这个背包最多只能放根号n个物品. ...

  8. [loj6089]小Y的背包计数问题

    https://www.zybuluo.com/ysner/note/1285358 题面 小\(Y\)有一个大小为\(n\)的背包,并且小\(Y\)有\(n\)种物品. 对于第\(i\)种物品,共有 ...

  9. 51nod 1597 有限背包计数问题 (背包 分块)

    题意 题目链接 Sol 不会做啊AAA.. 暴力上肯定是不行的,考虑根号分组 设\(m = \sqrt{n}\) 对于前\(m\)个直接暴力,利用单调队列优化多重背包的思想,按\(\% i\)分组一下 ...

  10. LOJ6089 小Y的背包计数问题 背包、根号分治

    题目传送门 题意:给出$N$表示背包容量,且会给出$N$种物品,第$i$个物品大小为$i$,数量也为$i$,求装满这个背包的方案数,对$23333333$取模.$N \leq 10^5$ $23333 ...

随机推荐

  1. MYSQL查询数据表中某个字段包含某个数值

    当某个字段中字符串是"1,2,3,4,5,6"或者"123456"查询数据表中某个字段是否包含某个值1:模糊查询  使用like       select * ...

  2. 像闪电般击碎天空吧——快速轻量化模型之 SDXL-Lightning

    SDXL-Lightning 是一个由 ByteDance(字节跳动) 开发的文本到图像的生成模型,其主要贡献在于其高速的生成能力和轻量化的设计. 模型的特点 快速生成:SDXL-Lightning ...

  3. 死锁,互斥锁,递归锁,线程事件Event,线程队列Queue,进程池和线程池,回调函数,协程的使用,协程的例子---day33

    1.死锁,互斥锁,递归锁 # ### 死锁 互斥锁 递归锁 from threading import Lock,Thread,RLock #递归锁 import time noddle_lock = ...

  4. 大众点评-CAT监控平台

    前言 我们禀着发现问题,解决问题的方针,针对后台诸多的服务,如何实时监控接口性能和访问频率,还要统计大盘信息?CAT作为大众点评开源的系统监控平台项目,下面就介绍一下CAT平台的搭建步骤. CAT作为 ...

  5. 【Azure 存储服务】Azure Storage Account 下的 Table 查询的性能调优

    问题描述 Azure Storage Account 下的 Table 查询的性能调优? 问题解答 因为Azure Storage Table服务(表服务) 与常规的关系型数据库不一样(例如:MySQ ...

  6. 【Azure 环境】移动应用 SSO 登录AAD, MSAL的配置为Webview模式时登录页面无法加载

    问题描述 移动端集成MASL登录过程中,配置文件中配置项"authorization_user_agent"使用"DEFAULT"可以正常登录,但是改为&quo ...

  7. BIM+物联网,打开数字孪生世界之门

    建筑行业一直在寻求创新和提高效率的方法,以满足日益复杂和迫切的建筑需求.近年来,数字孪生和物联网等新兴技术的崛起为建筑信息模型(BIM)应用带来了全新的可能性.数字孪生技术通过将实体建筑与其虚拟模型连 ...

  8. map 简单梳理【GO 基础】

    〇.map 简介 map 是一种无序的基于 key-value 的数据结构,Go 语言中的 map 是引用类型,必须初始化才能使用. 其中键可以是任何类型,但值必须是可比较的类型(如整数.字符串.布尔 ...

  9. IDEA使用与多线程

    IDEA缩写和快捷键 psvm全称public static void main sout 全称public static void main alt+enter 处理异常 s.out 自动打印s c ...

  10. KeyCastOW win10 屏幕显示按键 - 屏幕录像用

    KeyCastOW win10 屏幕显示按键 - 屏幕录像用 https://gitee.com/itas109/KeyCastOW/releases/v2.0.2.5-cn