一起学习ML和DL中常用的几种loss函数
摘要:本篇内容和大家一起学习下机器学习和深度学习中常用到的几种loss函数。
本文分享自华为云社区《【MindSpore易点通】网络实战之交叉熵类Loss函数》,作者:Skytier 。
本篇内容和大家一起学习下机器学习和深度学习中常用到的几种loss函数,根据计算分类方式以及场景的不同,我分为了以下三部分进行分析。
CrossEntropy Loss
交叉熵函数是在分类模型中常用的一种损失函数,其表达式为:

其中用到了信息熵的概念,信息量是一个事件发生所带来的信息,而信息熵则是在结果出来之前对可能产生的信息量的期望,考虑该随机变量的所有可能取值,即所有可能发生事件所带来的信息量的期望。
因此我们可以得到信息熵的计算表达式为:

其中P(xi)表示为在时间点x的发生概率,信息熵是用来衡量事物不确定性的。信息熵越大,事物越具不确定性,事物越复杂。
可以理解为对于同一个随机变量x,有两个概率分布,判断这两个概率分布的差异。假设两个概率分布对应为p(x),q(x), 如何表示这两个分布的差异,我们可以使用信息熵判断,于是相对熵产生。
p(x)分布的信息熵为:

q(x)分布的信息熵为:

相对熵为:

p(x)为样本真实分布,q(x)为预测分布
于是得到相对熵公式为:


交叉熵的函数表示为:

我们观察可以看出,这里与相对熵较为相似,由于我们进行模型训练,有监督训练,样本标签已经确定,相当于真实的概率的分布P(x)已经得知,因此这边的为固定值,相当于常量,那么可以继续优化表达式。
在我们模型训练中完整的相对熵表达式为:

对于其做为损失函数,常量可以忽略,因此得到了交叉熵的表现形式。

对于在二分类损失函数中应用,交叉熵损失函数为以下形式。

了解完交叉熵的基本计算原理,下面关联下另一种以交叉熵为基础的loss函数:BCELoss、BCEWithLogitsLoss和softmax_cross_entropy_with_logits。
BCELoss和SoftMarginLoss
这两种函数都是基于交叉熵的二分类loss函数,所以放在一起分析。
BCELoss中文名称是二分类交叉熵损失,它是用于做二分类模型的损失函数,因为是二分类,可以用0、1表示两个类别。如果想用于多分类的模型,可以将类别拆分成两两一组进行使用。先来看下BCELoss的表达式。

式子中的pt表示模型的预测值;target表示真实值,;w是权重值,一般是1。因为用0、1表示两个类别,所以在预测值和真实值相同时,其中一项将会为0,上面这个表达式是计算的单个样本。当一个batch的N个样本时,还需要累加再取平均数。

SoftMarginLoss对于包含N个样本的batch数据D(x,y), x代表模型输出, y代表真实的类 ,表达式如下:

式子中的x.nelement( )代表x中元素的个数N
如果单个样本对应一个二分类,则x.nelement( )=N
如果单个样本对应M个二分类,则x.nelement( )=M∗N
我们通过累加前的单个加数来分析

·当x[i]与y[i]同号,即预测正确时,x[i]与y[i]乘积越大,那么loss会越小,分类确信度就会越高;
·同理,当x[i]与y[i]异号,即预测错误时,loss越大。
BCEWithLogitsLoss和softmax_cross_entropy_with_logits
BCEWithLogitsLoss将sigmoid操作和与BCELoss组合到了一起使用。计算过程和原理是与BCELoss类似的,在BCELoss的计算表达计算式的基础中增加一个sigmoid计算,表达式如下。

softmax_cross_entropy_with_logits是在交叉熵前做一次softmax计算。具体的执行流程大概分为两个部分:
第一部分是对网络模型最后一层的输出做一个softmax,softmax的用处通常是求取输出属于某一类的概率,对于单样本而言,输出就是一个num_classes 大小的向量([Y1,Y2,Y3,...]其中Y1,Y2,Y3,...分别代表了是属于该类的概率)。softmax的计算表达式如下:

第二部分是将softmax的输出向量[Y1,Y2,Y3,...]和样本的实际标签做一个交叉熵计算

y`i指实际标签中第i个的值;yi指softmax的输出向量[Y1,Y2,Y3...]中,第i个元素的值。从而可以计算出loss值。
总结
本篇首先对交叉熵原理做了解析,再基于交叉熵的基础,引出了第二部分BCELoss和SoftMarginLoss的二分类loss函数,以及第三部分可用于多分类场景的BCEWithLogitsLoss和softmax_cross_entropy_with_logits损失函数。
一起学习ML和DL中常用的几种loss函数的更多相关文章
- python中常用的九种数据预处理方法分享
Spyder Ctrl + 4/5: 块注释/块反注释 本文总结的是我们大家在python中常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍; 1. 标准化(St ...
- python中常用的九种预处理方法
本文总结的是我们大家在python中常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍; 1. 标准化(Standardization or Mean Removal ...
- 如何理解JavaScript中常用的4种排序算法?
如何理解JavaScript中常用的4种排序算法? 冒泡排序 冒泡排序是我们在编程算法中,算是比较常用的排序算法之一,在学习阶段,也是最需要接触理解的算法,所以我们放在第一个来学习. 算法介绍: ...
- 【原】实时渲染中常用的几种Rendering Path
[原]实时渲染中常用的几种Rendering Path 本文转载请注明出处 —— polobymulberry-博客园 本文为我的图形学大作业的论文部分,介绍了一些Rendering Path,比较简 ...
- C#中常用的几种读取XML文件的方法
1.C#中常用的几种读取XML文件的方法:http://blog.csdn.net/tiemufeng1122/article/details/6723764/
- .NET中常用的几种解析JSON方法
一.基本概念 json是什么? JSON:JavaScript 对象表示法(JavaScript Object Notation). JSON 是一种轻量级的数据交换格式,是存储和交换文本信息的语法. ...
- iOS中常用的四种数据持久化方法简介
iOS中常用的四种数据持久化方法简介 iOS中的数据持久化方式,基本上有以下四种:属性列表.对象归档.SQLite3和Core Data 1.属性列表涉及到的主要类:NSUserDefaults,一般 ...
- 【转载】Python编程中常用的12种基础知识总结
Python编程中常用的12种基础知识总结:正则表达式替换,遍历目录方法,列表按列排序.去重,字典排序,字典.列表.字符串互转,时间对象操作,命令行参数解析(getopt),print 格式化输出,进 ...
- Python编程中常用的12种基础知识总结
原地址:http://blog.jobbole.com/48541/ Python编程中常用的12种基础知识总结:正则表达式替换,遍历目录方法,列表按列排序.去重,字典排序,字典.列表.字符串互转,时 ...
- 请写出JavaScript中常用的三种事件。
请写出JavaScript中常用的三种事件. 解答: onclick,onblur,onChange
随机推荐
- 【scipy 基础】--积分和微分方程
对于手工计算来说,积分计算是非常困难的,对于一些简单的函数,我们可以直接通过已知的积分公式来求解,但在更多的情况下,原函数并没有简单的表达式,因此确定积分的反函数变得非常困难. 另外,相对于微分运算来 ...
- 如何对BIOS/UEFI 更新
确定当前BIOS/UEFI版本: 在启动计算机时,按下相应的键(通常是DEL.F2.或F10,具体取决于制造商),进入BIOS/UEFI设置.在系统信息或主页部分,你应该能够找到当前的BIOS/UEF ...
- 字符串分割(String.Split)时连同分隔符一起返回
今天有个群友问了这个问题:"字符串分割时,如何连同分隔符一起返回?". 我这里写了个String扩展类,模仿原生的Split方法,与原生Split方法的区别在于多了个返回分隔符的枚 ...
- python内置模块——logging
内置模块-logging loging模块是python提供的内置模块,用来做日志处理. 日志等级: 等级 释义 级别数值 CRITICAL(fatal) 致命错误,程序根本跑不起来 50 ERROR ...
- UNCTF-Crypto wp
2020年 easy_rsa 题目 from Crypto.Util import number import gmpy2 from Crypto.Util.number import bytes_t ...
- 神经网络优化篇:详解偏差,方差(Bias /Variance)
偏差,方差 注意到,几乎所有机器学习从业人员都期望深刻理解偏差和方差,这两个概念易学难精,即使自己认为已经理解了偏差和方差的基本概念,却总有一些意想不到的新东西出现.关于深度学习的误差问题,另一个趋势 ...
- NestJs系列之使用Vite搭建项目
介绍 在使用nest创建项目时,默认使用webpack进行打包,有时候启动项目需要1-2分钟.所以希望采用vite进行快速启动项目进行开发. 本文主要使用NestJs.Vite和swc进行配置.文章实 ...
- Go语言实现GoF设计模式:适配器模式
本文分享自华为云社区<[Go实现]实践GoF的23种设计模式:适配器模式>,作者:元闰子. 简介 适配器模式(Adapter)是最常用的结构型模式之一,在现实生活中,适配器模式也是处处可见 ...
- [ABC262F] Erase and Rotate
Problem Statement You are given a sequence $P = (p_1,p_2,\ldots,p_N)$ that contains $1,2,\ldots,N$ e ...
- docker 设计及源码分析
1.dockerd 是一个长期运行的守护进程(docker daemon).负责管理 docker 容器的生命周期.镜像和存储等.实际还是通过grpc 的协议调用 containerd 的 api 接 ...