「图论」Bron-kerbosch算法
7.21晚上加赛 T2.七负我,做这题找到了性质发现需要求最大团,不会,爆搜,打假了,赛后改,对了,但时间复杂度大爆炸,看下发题解,有这么一句话:
于是学习了一下。
Bron-kerbosch算法-求图的最大团,极大团
概念:
- 团:每个顶点都两两相连(又叫完全子图)
- 极大团:没有被包含在其他团中的团
- 最大团:顶点数最多的极大团
算法过程:
过程:
我们维护三个集合 \(R,P,X\),\(R\) 表示当前正在找的极大团里的点,\(P\) 表示有可能加入当前在找的极大团里的点,\(X\) 表示已经找到的极大团中的点(用来判重),进行以下过程:
初始化 \(R, X\) 为空集,\(P\) 为包含所有点的集合;
将 \(P\) 中顶部元素 \(u\) 点取出,(设 \(Q(u)\) 为所有与 \(u\) 相邻的点)递归集合 \(R ∪{u},P ∩ {Q(u)},X ∩ {Q(u)}\);
- 在递归的过程中如果集合 \(P 和 X\) 都为空,则集合 \(R\) 中的点构成一个极大团。
将 \(u\) 点从集合 \(P\) 中删去,添加到集合 \(X\) 中;
不断重复 2~3 操作,直至 \(P\) 为空。
只看算法过程可能不好理解,那么下面是伪代码及分析。
伪代码(伪代码出处CSDN已改进):
void dfs(R, P, X){
if(P 和 X 均为空) 输出 R 集合为一个极大团
for 从 P 中选取一个点 a,与 a 相连的点集为 Q(a) {
dfs(R 并上 a,P 和 Q(a) 的交集,X 和 Q(a) 的交集)
从 P 中移除 a 点
把 a 点加入 X 集合
}
}
分析:
算法主要思路:很简单,我们每次枚举合法的点加入极大团中,合法即为保证该点加入团中,该团仍然是团,接着更新合法点集合(即可能属于在找的团的点集 \(P\) ),不断递归直到该团极大即可。
我们用 \(P\) 集合维护可能包含于目前所在找的极大团的点集,分析 \(P\) 集合是如何更进的:
\(R\) 是当前在找的极大团,由于 \(R\) 集合是每次任意从 \(P\) 中取一个点,我们知道团的定义为任意两个点都有边相连,所以若我把当前新选择的点 \(a\) 加入团中,那么 \(R\) 加入 \(a\) 之后,要想保证新 \(P\) 集合中的点可能包含于新 \(R\) 中团,那么需要满足 \(P\) 中的点都与 \(R\) 中任意一点相连。我们已经可以保证原 \(R\) (加入 \(a\) 之前)集合里所有点都与原 \(P\) 中的点相连,所以现在只需添加条件使得新 \(P\) 中的点与 \(a\) 点相连,于是 \(P∩{Q(a)}\) 是新 \(P\) 集合。找到一个极大团时需要满足 \(P,X\) 集合都为空:
\(P\) 为空即再没有点可以加到 \(R\) 集合中,保证在找的团极大;\(X\) 为空保证之前没有找过此团,用来判重。
算法实现:
带详细注释code:
注:建议先看本篇博客的算法过程部分以方便看懂代码的注释
int to[N][N], mnt; //to[i][j]用来判断 i 到 j 之间是否连边,mnt为最大团中点的个数
int had[N][N], may[N][N], vis[N][N]; //had,may,vis分别表示 当前在找的团中已有的点、可能加入当前在找的团中的点、已经搜过的点(分别对应算法过程的集合 R,P,X)
//had,may,vis的第一维i都表示处于搜索的第i层,第二维j表示相应的点的个数
//d表示当前搜索处于第几层,R、P、X分别表示had,may,vis在该层搜索中点的个数
void Bron_Kerbosch(int d, int R, int P, int X){
if(!P and !X){ mnt = max(mnt, R); return;} //找到一个极大团
for(int i=1; i<=P; i++){
int u = may[d][i]; //从 P 中取点
for(int j=1; j<=R; j++){
had[d+1][j] = had[d][j];
} had[d+1][R+1] = u; //即 R' = R + {u} 的操作
int newP = 0, newX = 0;
for(int j=1; j<=P; j++) // P' = P ∩ Q(u)
if(to[u][may[d][j]]) may[d+1][++newP] = may[d][j];
for(int j=1; j<=X; j++) // X' = X ∩ Q(u)
if(to[u][vis[d][j]]) vis[d+1][++newX] = vis[d][j];
Bron_Kerbosch(d+1, R+1, newP, newX); //递归搜索
may[d][i] = 0, vis[d][++X] = u; //将 u 点从 P 中删去,加入 X 中
}
}
到这里,就已经可以 A 掉那晚加赛的 T2.七负我 了。
AC 代码
#include<bits/stdc++.h>
#define mp make_pair
#define ll long long
using namespace std;
const int N = 50;
int n, m, x, hnt;
int to[N][N];
int had[N][N], may[N][N], vis[N][N];
void Bron_Kerbosch(int d, int R, int P, int X){
if(!P and !X){ hnt = max(hnt, R); return; }
for(int i=1; i<=P; i++){
int u = may[d][i];
for(int j=1; j<=R; j++){
had[d+1][j] = had[d][j];
} had[d+1][R+1] = u;
int newP = 0, newX = 0;
for(int j=1; j<=P; j++)
if(to[u][may[d][j]]) may[d+1][++newP] = may[d][j];
for(int j=1; j<=X; j++)
if(to[u][vis[d][j]]) vis[d+1][++newX] = vis[d][j];
Bron_Kerbosch(d+1, R+1, newP, newX);
may[d][i] = 0, vis[d][++X] = u;
}
}
signed main(){
// freopen("in.in", "r", stdin); freopen("out.out", "w", stdout);
scanf("%d%d%d", &n, &m, &x);
for(int i=1; i<=m; i++){
int a, b; scanf("%d%d", &a, &b);
to[a][b] = to[b][a] = 1;
}
int num = 0;
for(int i=1; i<=n; i++)
may[1][++num] = i;
Bron_Kerbosch(1, 0, num, 0);
double ans = x * 1.0 / hnt;
ans *= ans;
ans *= ((hnt - 1) * hnt / 2);
printf("%.6lf", ans);
return 0;
}
但是,这个算法还可以通过设定关键点(pivot vertex)\(v\) 进行优化。主要优化原理见 oi-wiki。
优化代码(纯享版):
int to[N][N], hnt;
int had[N][N], may[N][N], vis[N][N];
void Bron_kerbosch(int d, int R, int P, int X){
if(!P and !X) { hnt = max(hnt, R); return;}
int u = may[d][1];
for(int i=1; i<=P; i++){
int v = may[d][i];
if(to[u][v]) continue;
for(int j=1; j<=R; j++){
had[d+1][j] = had[d][j];
} had[d+1][R+1] = v;
int newP = 0, newX = 0;
for(int j=1; j<=P; j++)
if(to[v][may[d][j]]) may[d+1][++newP] = may[d][j];
for(int j=1; j<=X; j++)
if(to[v][vis[d][j]]) vis[d+1][++newX] = vis[d][j];
Bron_kerbosch(d+1, R+1, newP, newX);
may[d][i] = 0, vis[d][++X] = v;
}
}
「图论」Bron-kerbosch算法的更多相关文章
- 不设目标也能通关「马里奥」的AI算法,全靠好奇心学习
在强化学习中,设计密集.定义良好的外部奖励是很困难的,并且通常不可扩展.通常增加内部奖励可以作为对此限制的补偿,OpenAI.CMU 在本研究中更近一步,提出了完全靠内部奖励即好奇心来训练智能体的方法 ...
- 「POI2010」反对称 Antisymmetry (manacher算法)
# 2452. 「POI2010」反对称 Antisymmetry [题目描述] 对于一个 $0/1$ 字符串,如果将这个字符串 $0$ 和 $1$ 取反后,再将整个串反过来和原串一样,就称作「反对称 ...
- 「给产品经理讲JVM」:垃圾收集算法
纠结的我,给我的JVM系列终于起了第三个名字,害,我真是太难了.从 JVM 到 每日五分钟,玩转 JVM 再到现在的给产品经理讲 JVM ,虽然内容为王,但是标题可以让更多的人看到我的文章,所以,历经 ...
- 「2014-3-18」multi-pattern string match using aho-corasick
我是擅(倾)长(向)把一篇文章写成杂文的.毕竟,写博客记录生活点滴,比不得发 paper,要求字斟句酌八股结构到位:风格偏杂文一点,也是没人拒稿的.这么说来,arxiv 就好比是 paper 世界的博 ...
- jvm系列(十):如何优化Java GC「译」
本文由CrowHawk翻译,是Java GC调优的经典佳作. 本文翻译自Sangmin Lee发表在Cubrid上的"Become a Java GC Expert"系列文章的第三 ...
- 洛谷 P4714 「数学」约数个数和 解题报告
P4714 「数学」约数个数和 题意(假):每个数向自己的约数连边,给出\(n,k(\le 10^{18})\),询问\(n\)的约数形成的图中以\(n\)为起点长为\(k\)的链有多少条(注意每个点 ...
- 一个「学渣」从零开始的Web前端自学之路
从 13 年专科毕业开始,一路跌跌撞撞走了很多弯路,做过餐厅服务员,进过工厂干过流水线,做过客服,干过电话销售可以说经历相当的“丰富”. 最后的机缘巧合下,走上了前端开发之路,作为一个非计算机专业且低 ...
- LoibreOJ 2042. 「CQOI2016」不同的最小割 最小割树 Gomory-Hu tree
2042. 「CQOI2016」不同的最小割 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- 「NOI2018」你的名字
「NOI2018」你的名字 题目描述 小A 被选为了\(ION2018\) 的出题人,他精心准备了一道质量十分高的题目,且已经 把除了题目命名以外的工作都做好了. 由于\(ION\) 已经举办了很多届 ...
- 【LibreOJ】#6396. 「THUPC2018」弗雷兹的玩具商店 / Toyshop 线段树+完全背包
[题目]#6396. 「THUPC2018」弗雷兹的玩具商店 / Toyshop [题意]给定一个长度为n的物品序列,每个物品有价值.不超过m的重量.要求支持以下三种操作:1.物品价值区间加减,2.物 ...
随机推荐
- Java8 Lambda表达式入门
可能很多人都听说过java8的新特性----Lambada表达式,但可能很多人都不知道Lambda表达式到底有什么用,下面我带大家理解一下Lambada表达式. 在平时的编程中,我们常常会用到匿名内部 ...
- JS / jQuery 刷新页面的方法
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 利用Django实现文件上传
一.form表单的形式上传文件 1.路由 urlpatterns = [ path("upload/", views.UploadView.as_view(),) ] 2.视图 f ...
- itest(爱测试)开源接口测试&敏捷测试&极简项目管理 6.6.6 发布,新增接口mock
(一)itest 简介及更新说明 itest 开源敏捷测试管理,testOps 践行者,极简的任务管理,测试管理,缺陷管理,测试环境管理,接口测试,接口Mock 6合1,又有丰富的统计分析.可按测试包 ...
- kubernetes(k8s)
应用程序部署的演变过程 在部署应用程序的方式上,主要经历了三个时代 传统部署 互联网早期,会直接将应用程序部署在物理机上 优点: 简单,不需要其他技术的参与 缺点: 不能为应用程序定义资源使用边界,很 ...
- mac os 10.15.1 懒人 .CDR
链接:https://pan.baidu.com/s/1MHbUnHWQuGVE1P36mTjmkQ 提取码:ohlu
- nginx目录索引、文件下载服务
目录索引.文件下载服务 官网文档 http://nginx.org/en/docs/http/ngx_http_autoindex_module.html 利用nginx实现文件下载服务器 1.参数说 ...
- 警告: BASE64Decoder是内部专用 API, 可能会在未来发行版中删除
警告: BASE64Decoder是内部专用 API, 可能会在未来发行版中删除 import org.apache.commons.codec.binary.Base64; public class ...
- .NET8操作Mysql,Pomelo.EntityFrameworkCore.MySql版本目前最高只有7.0解决办法
Pomelo.EntityFrameworkCore.MySql7.0是不支持.NET8的,但现在Pomelo.EntityFrameworkCore.MySql的最新版本只有7.0 因为 Pomel ...
- 高级前端开发需要知道的 25 个 JavaScript 单行代码
1. 不使用临时变量来交换变量的值 例如我们想要将 a 于 b 的值交换 let a = 1, b = 2; // 交换值 [a, b] = [b, a]; // 结果: a = 2, b = 1 这 ...