bzoj 4815: [Cqoi2017]小Q的表格 [数论]
4815: [Cqoi2017]小Q的表格
题意:
单点修改,查询前缀正方形和。修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b)
一开始sb了认为一次只会改动两三个格子想了个cdq分治做法...
一次会影响很多格子...
经过观察以及\((a,b)=(a,a-b)=(a,a+b)\)发现,每次修改影响所有\((i,j)=(a,b)\)的点对,并且关系为\(f(i,j)=\frac{i}{a}\frac{j}{b} f(a,b)\)
我们可以只记录\(f(d,d)\)的值\(f(d)\),其他值都能得到
然后套路推倒,最后得到
\]
这里用莫比乌斯反演我只会两个分块,不如直接代入phi
S(n) = \sum_{i=1}^n i \sum_{j=1}^n j [(i,j)=1] = \sum_{i=1}^n \varphi(i)*i^2
\]
维护f值可以用分块,总体复杂度\(O(n\sqrt{n})\)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = 4e6+5, mo = 1e9+7, M = 3e3+5, inv2 = (mo+1)/2;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
bool notp[N]; int p[N/10], phi[N]; ll s[N];
void sieve(int n) {
phi[1] = 1;
for(int i=2; i<=n; i++) {
if(!notp[i]) p[++p[0]] = i, phi[i] = i-1;
for(int j=1; j <= p[0] && i*p[j] <= n; j++) {
notp[i*p[j]] = 1;
if(i%p[j] == 0) {
phi[i*p[j]] = phi[i] * p[j];
break;
}
phi[i*p[j]] = phi[i] * (p[j] - 1);
}
}
for(int i=1; i<=n; i++) s[i] = (s[i-1] + (ll) i * i %mo * phi[i] %mo) %mo;
}
int gcd(int a, int b) {return !b ? a : gcd(b, a%b);}
ll Pow(ll a, int b) {
ll ans=1;
for(; b; b>>=1, a=a*a%mo)
if(b&1) ans=ans*a%mo;
return ans;
}
int Q, n, a, b, k; ll x;
namespace B {
int f[N], add[N], a[N];
int pos[N], block, m;
struct _blo{int l, r;} b[N];
void init() {
block = sqrt(n); m = (n-1)/block+1;
for(int i=1; i<=n; i++) pos[i] = (i-1)/block+1, a[i] = (ll)i*i%mo, f[i] = (a[i] + f[i-1]) %mo;
for(int i=1; i<=m; i++) b[i].l = (i-1)*block+1, b[i].r = i*block;
}
int que(int x) { return (f[x] + add[pos[x]]) %mo; }
void cha(int x, int v) {
int d = (v - a[x] + mo) %mo, r = b[pos[x]].r; a[x] = v;
if(d==0) return;
for(int i=x; i<=r; i++) f[i] = (f[i] + d) %mo;
for(int i=pos[x]+1; i<=m; i++) add[i] = (add[i] + d) %mo;
}
} using B::cha; using B::que;
void solve(int n) {
int ans = 0, r, last = 0, now;
for(int i=1; i<=n; i=r+1, last=now) {
r = n/(n/i); now = que(r);
ans = (ans + (ll) (now - last + mo) * s[n/i] %mo) %mo;
}
printf("%d\n", (ans + mo) %mo);
}
int main() {
freopen("in", "r", stdin);
Q=read(); n=read();
sieve(n);
B::init();
for(int i=1; i<=Q; i++) {
a=read(); b=read(); scanf("%lld", &x); k=read();
x %= mo;
int d = gcd(a, b);
cha(d, (ll) d * d %mo * x %mo * Pow((ll) a * b %mo, mo-2) %mo );
solve(k);
}
}
bzoj 4815: [Cqoi2017]小Q的表格 [数论]的更多相关文章
- BZOJ 4815 CQOI2017 小Q的表格 欧拉函数+分块
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 题意概述:要认真概述的话这个题就出来了... 分析: 首先分析题目,认真研究一下修 ...
- bzoj 4815: [Cqoi2017]小Q的表格【欧拉函数+分块】
参考:http://blog.csdn.net/qq_33229466/article/details/70174227 看这个等式的形式就像高精gcd嘛-所以随便算一下就发现每次修改(a,b)影响到 ...
- bzoj 4815 [Cqoi2017]小Q的表格——反演+分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 大概就是推式子的时候注意有两个边界都是 n ,考虑变成 2*... 之类的. 分块维护 ...
- BZOJ 4815 [Cqoi2017]小Q的表格 ——欧拉函数
把式子化简一波. 发现一个比较厉害的性质:每个点只能影响到行列下标$gcd$与它相同的点. 然后就可以计算$\sum_{g<=k}f(g,g)*\sum_{i<=k}\sum_{j< ...
- [CQOI2017]小Q的表格(数论+分块)
题目描述 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理.每当小Q不知道如何解决时,就只好向你求助. 为了完成任务,小Q需要列一个表格,表格有无穷多 ...
- [BZOJ4815][CQOI2017]小Q的表格 数论+分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4815 题目中所给条件中的$(a,a+b)$和$(a,b)$的关系很瞩目. 然后大家都知道$ ...
- 4815: [Cqoi2017]小Q的表格 莫比乌斯反演 分块
(Updated 2018.04.28 : 发现公式效果不好,重新处理图片)国际惯例的题面:看到这两个公式,很多人都会想到与gcd有关.没错,最终的结论就是f(a,b)=f(gcd(a,b))*(a/ ...
- [BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演)
4815: [Cqoi2017]小Q的表格 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 832 Solved: 342[Submit][Statu ...
- 【BZOJ4815】[CQOI2017]小Q的表格(莫比乌斯反演,分块)
[BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演,分块) 题面 BZOJ 洛谷 题解 神仙题啊. 首先\(f(a,b)=f(b,a)\)告诉我们矩阵只要算一半就好了. 接下来是\(b* ...
随机推荐
- UEP-find查询
实体类: @Entity @Table(name = "xxxxx") public class WzInitializeStoreInfo extends EntityBean{ ...
- [国嵌攻略][154][Linux-I2C子系统]
IIC子系统架构 device driver层: 1.device driver,由用户开发. 2.i2c-dev由内核实现,但是需要配合应用模式驱动才能使用. i2c core层: 1.总线驱动,也 ...
- 编写自己的JavaScript方法库
下面列出了我在项目中经常使用到的一些方法,这些方法可以很方便的提高我们的工作效率,代码在GitHub上面,点击目录就可以跳转了,欢迎大家通过fork,改编和优化成自己的JavaScript方法库. 目 ...
- 迈向c++的一次尝试
从C到C++说着容易做起来也不难,今天做一下尝试. ★:题目介绍:今天是一次尝试所以先从简单的题开始. ★:试题分析:由题可了解到本题目的是要做到由一个数字到一个字符串的转变. 题目简单是由于它只是让 ...
- python的枚举
通过Enum()方式 这种方式value属性则是自动赋给成员的int常量,默认从1开始计数 from enum import Enum Month = Enum('Month', ('Jan', 'F ...
- telnet配置和telnet用法
搭建或配置网络环境时,经常会使用ping命令检查网络是否可达.有些时候Ping命令也不好使,比如因防火墙禁止或访问策略限制等.则可使用telnet测试映射端口或远程访问主机. Telnet协议是TCP ...
- nxlog4go 简介 - 基于log4go的下一代go语言日志系统
nxlog4go的项目网址: https://github.com/ccpaging/nxlog4go 项目历史 ccpaging's log4go forked from https://githu ...
- libz.dylib
1. .dylib意味着这是一个动态链接库. 2. libz.dylib是提供zip压缩解压缩的库
- Centos6.9安装Node.js+npm爬坑
Node.js选择 1.下载 wget https://nodejs.org/dist/v8.4.0/node-v8.4.0-linux-x86.tar.gz 2.解压 tar zxvf node-v ...
- shopnc验证码显示不了
data/config文件编码问题,要utf-8无bom