BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈

Description

Input

一行,一个字符串S

Output

一行,一个整数,表示所求值

Sample Input

cacao

Sample Output

54


前面那个len的和=(n-1)*n*(n+1)/2。只需要考虑后面的贡献。

求出height数组,然后问题转化为求所有区间的最小值之和。

设f[i]为所有右端点为i的区间的最小值之和。

每次找到i左边第一个height小于等于i的位置j,显然左端点在j之前那部分的答案之和为f[j],左端点在j之后的那部分的最小值为height[i]。

有f[i]=f[j]+(i-j)*height[i]。

维护一个单调栈(单调递增),每次找j就很方便。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
#define N 500050
typedef long long ll;
int wa[N],wb[N],wv[N],ws[N],r[N],sa[N],height[N],rank[N],n,m,S[N],top;
ll f[N];
char s[N];
void build_suffix_array() {
m=129;
int i,j,p,*x=wa,*y=wb,*t;
for(i=0;i<m;i++) ws[i]=0;
for(i=0;i<n;i++) ws[x[i]=r[i]]++;
for(i=1;i<m;i++) ws[i]+=ws[i-1];
for(i=n-1;i>=0;i--) sa[--ws[x[i]]]=i;
for(j=p=1;p<n;j<<=1,m=p) {
for(p=0,i=n-j;i<n;i++) y[p++]=i;
for(i=0;i<n;i++) if(sa[i]-j>=0) y[p++]=sa[i]-j;
for(i=0;i<n;i++) wv[i]=x[y[i]];
for(i=0;i<m;i++) ws[i]=0;
for(i=0;i<n;i++) ws[wv[i]]++;
for(i=1;i<m;i++) ws[i]+=ws[i-1];
for(i=n-1;i>=0;i--) sa[--ws[wv[i]]]=y[i];
for(t=x,x=y,y=t,x[sa[0]]=0,i=p=1;i<n;i++) {
if(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+j]==y[sa[i-1]+j]) x[sa[i]]=p-1;
else x[sa[i]]=p++;
}
}
for(i=1;i<n;i++) rank[sa[i]]=i;
for(i=p=0;i<n-1;height[rank[i++]]=p)
for(p?p--:0,j=sa[rank[i]-1];r[i+p]==r[j+p];p++); }
int main() {
scanf("%s",s);
n=strlen(s);
int i;
ll sum=1ll*n*(n+1)*(n-1)/2;
for(i=0;i<n;i++) r[i]=s[i];
r[n++]=0;
build_suffix_array();
for(i=0;i<n;i++) {
while(top&&height[i]<height[S[top]]) top--;
int j=S[top];
f[i]=f[j]+1ll*(i-j)*height[i]; sum-=2*f[i];
S[++top]=i;
}
printf("%lld\n",sum);
}

BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈的更多相关文章

  1. BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】

    题目链接 BZOJ3238 题解 简单题 经典后缀数组 + 单调栈套路,求所有后缀\(lcp\) #include<iostream> #include<cstdio> #in ...

  2. BZOJ_3238_[Ahoi2013]差异_后缀自动机

    BZOJ_3238_[Ahoi2013]差异_后缀自动机 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sam ...

  3. [bzoj3238][Ahoi2013]差异_后缀数组_单调栈

    差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...

  4. [BZOJ 3238] [AHOI 2013] 差异 【后缀数组 + 单调栈】

    题目链接:BZOJ - 3238 题目分析 显然,这道题就是求任意两个后缀之间的LCP的和,这与后缀数组的联系十分明显. 求出后缀数组后,求出字典序相邻两个后缀的LCP,即 Height 数组. 那么 ...

  5. [bzoj3238]差异(后缀数组+单调栈)

    显然我们可以先把len(Ti)+len(Tj)的值先算出来,再把LCP减去.所有len(Ti)+len(Tj)的值为n*(n-1)*(n+1)/2,这个随便在纸上画一画就可以算出来的. 接下来问题就是 ...

  6. 【BZOJ-3238】差异 后缀数组 + 单调栈

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1561  Solved: 734[Submit][Status] ...

  7. 【BZOJ3879】SvT 后缀数组+单调栈

    [BZOJ3879]SvT Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干 ...

  8. BZOJ_3879_SvT_后缀数组+单调栈

    BZOJ_3879_SvT_后缀数组+单调栈 Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个 ...

  9. BZOJ.4199.[NOI2015]品酒大会(后缀数组 单调栈)

    BZOJ 洛谷 后缀自动机做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 显然只需要考虑极长的相同子串的贡献,然后求后缀和/后缀\(\max\)就可以了. 对于相同子串,我们能想 ...

随机推荐

  1. GitHub Desktop 如何创建本地仓库,上传代码,删除仓库

    1.创建本地仓库 2.打开本地仓库,将要上传的文件放到本地仓库. 3.ctrl+p push仓库或者菜单栏Repository下push也可以用右上角的publish respository 4.左边 ...

  2. 收藏 - android

    收藏 - android开发 2018-05-04 16:39:36 介绍:这篇文章是收藏系列的开山第一篇,主要收藏了跟android开发有关的一些内容,也算是内容汇总,后期会持续更新: 内容目录 1 ...

  3. 关于js对象添加属性

    字符串类型的(注意要加引号): var obj={}; for(var i=0;i<10;i++){ eval("obj.key"+i+"='"+&quo ...

  4. IT轮子系列(一)——DropDownList 的绑定,你秒懂了吗

    前言 最近猛然惊觉(说是猛然,是因为自己工作那么多年,居然不自知.不反省),在开发中,自己碰到一些常用的功能代码块,还是习惯性的baidu,然后copy....这样的操作,不知自己重复了多少遍.现在回 ...

  5. 设置eclipse全局编码格式

    window--preference--general--workspace--text file encoding

  6. RESTful小拓展

    RESTful 即Resource Representation State Transfer 相对应Resource 资源层,Representation 表现层,State Transfer状态转 ...

  7. Storyboard的几点缺憾

    Storyboard作为iOS主推的UI开发方式,不管接受也好,不接受也好,在未来几年,都会逐渐在产业界流行,之前bignerd在其ios开发第四版中,作者曾经说过一节的Storyboard优缺点分析 ...

  8. SQLServer2PostgreSQL迁移过程中的几个问题

    1.PostgreSQL 跨平台迁移工具Migration Toolkit的使用指南:http://www.enterprisedb.com/docs/en/8.4/mtkguide/Table%20 ...

  9. Django中的原子事务相关注意事项

    Django中的原子事务支持(transaction.atomic)方式函数装饰器或者with语句,这种方式特别是前者和spring里面的AOP事务支持方式基本等同,当然其实质方式都是原始的try.. ...

  10. 测试驱动开发 TDD

    一.详解TDD 1.1.TDD概念 :Test Drived Develop 测试驱动开发是敏捷开发中的一项核心实践和技术,也是一种方法论.TDD的原理是在开发功能代码之前,编写单元测试用例代码,测试 ...