BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈
BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈
Description
.jpg)
Input
一行,一个字符串S
Output
一行,一个整数,表示所求值
Sample Input
Sample Output
54
前面那个len的和=(n-1)*n*(n+1)/2。只需要考虑后面的贡献。
求出height数组,然后问题转化为求所有区间的最小值之和。
设f[i]为所有右端点为i的区间的最小值之和。
每次找到i左边第一个height小于等于i的位置j,显然左端点在j之前那部分的答案之和为f[j],左端点在j之后的那部分的最小值为height[i]。
有f[i]=f[j]+(i-j)*height[i]。
维护一个单调栈(单调递增),每次找j就很方便。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
#define N 500050
typedef long long ll;
int wa[N],wb[N],wv[N],ws[N],r[N],sa[N],height[N],rank[N],n,m,S[N],top;
ll f[N];
char s[N];
void build_suffix_array() {
m=129;
int i,j,p,*x=wa,*y=wb,*t;
for(i=0;i<m;i++) ws[i]=0;
for(i=0;i<n;i++) ws[x[i]=r[i]]++;
for(i=1;i<m;i++) ws[i]+=ws[i-1];
for(i=n-1;i>=0;i--) sa[--ws[x[i]]]=i;
for(j=p=1;p<n;j<<=1,m=p) {
for(p=0,i=n-j;i<n;i++) y[p++]=i;
for(i=0;i<n;i++) if(sa[i]-j>=0) y[p++]=sa[i]-j;
for(i=0;i<n;i++) wv[i]=x[y[i]];
for(i=0;i<m;i++) ws[i]=0;
for(i=0;i<n;i++) ws[wv[i]]++;
for(i=1;i<m;i++) ws[i]+=ws[i-1];
for(i=n-1;i>=0;i--) sa[--ws[wv[i]]]=y[i];
for(t=x,x=y,y=t,x[sa[0]]=0,i=p=1;i<n;i++) {
if(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+j]==y[sa[i-1]+j]) x[sa[i]]=p-1;
else x[sa[i]]=p++;
}
}
for(i=1;i<n;i++) rank[sa[i]]=i;
for(i=p=0;i<n-1;height[rank[i++]]=p)
for(p?p--:0,j=sa[rank[i]-1];r[i+p]==r[j+p];p++); }
int main() {
scanf("%s",s);
n=strlen(s);
int i;
ll sum=1ll*n*(n+1)*(n-1)/2;
for(i=0;i<n;i++) r[i]=s[i];
r[n++]=0;
build_suffix_array();
for(i=0;i<n;i++) {
while(top&&height[i]<height[S[top]]) top--;
int j=S[top];
f[i]=f[j]+1ll*(i-j)*height[i]; sum-=2*f[i];
S[++top]=i;
}
printf("%lld\n",sum);
}
BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈的更多相关文章
- BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】
题目链接 BZOJ3238 题解 简单题 经典后缀数组 + 单调栈套路,求所有后缀\(lcp\) #include<iostream> #include<cstdio> #in ...
- BZOJ_3238_[Ahoi2013]差异_后缀自动机
BZOJ_3238_[Ahoi2013]差异_后缀自动机 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sam ...
- [bzoj3238][Ahoi2013]差异_后缀数组_单调栈
差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...
- [BZOJ 3238] [AHOI 2013] 差异 【后缀数组 + 单调栈】
题目链接:BZOJ - 3238 题目分析 显然,这道题就是求任意两个后缀之间的LCP的和,这与后缀数组的联系十分明显. 求出后缀数组后,求出字典序相邻两个后缀的LCP,即 Height 数组. 那么 ...
- [bzoj3238]差异(后缀数组+单调栈)
显然我们可以先把len(Ti)+len(Tj)的值先算出来,再把LCP减去.所有len(Ti)+len(Tj)的值为n*(n-1)*(n+1)/2,这个随便在纸上画一画就可以算出来的. 接下来问题就是 ...
- 【BZOJ-3238】差异 后缀数组 + 单调栈
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1561 Solved: 734[Submit][Status] ...
- 【BZOJ3879】SvT 后缀数组+单调栈
[BZOJ3879]SvT Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干 ...
- BZOJ_3879_SvT_后缀数组+单调栈
BZOJ_3879_SvT_后缀数组+单调栈 Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个 ...
- BZOJ.4199.[NOI2015]品酒大会(后缀数组 单调栈)
BZOJ 洛谷 后缀自动机做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 显然只需要考虑极长的相同子串的贡献,然后求后缀和/后缀\(\max\)就可以了. 对于相同子串,我们能想 ...
随机推荐
- solr研磨之facet
作者:战斗民族就是干 转载请注明地址:http://www.cnblogs.com/prayers/p/8822417.html Facet 开门见山,facet解决的就是筛选,我是把它理解为一种聚合 ...
- kubernetes-dashboard(1.8.3)部署与踩坑
Kubernetes Dashboard 是一个管理Kubernetes集群的全功能Web界面,旨在以UI的方式完全替代命令行工具(kubectl 等). 目录 部署 创建用户 集成Heapster ...
- SpringBoot的第一个例子
1. 安装springboot的开发IDE,IntelliJ IDEA 2016.3.1这个工具,在IDE的官网上可以下载最新版本.https://www.jetbrains.com/idea/#ch ...
- javascript—Mach的一些常用方法
1.Math.random():返回 0 ~ 1 之间的随机数. 2.Math.round():四舍五入取整. 3.Math.ceil():向上取整; 例如:a=1.2,b=5.8; ...
- js获取Session的值
纯htm页面必须采用AJAX了, ASP页面:var manager='<%=session("manager")%>', ASPX页面:var manager='&l ...
- HTMLConverter使用实例(转)
---- 本来,Applet的概念相当简单——只要在Web页面中加入一个< APPLET >标记就可以了.浏览器一遇到这个标记,就会下载对应的 Applet类文件,并启动自己的解释器运行这 ...
- YUV420格式解析
一般的的YUV420图像格式实际上是Y'UV,420指的是其在Y U V上面的采样率.在YUV420的格式中,首先存储每一个像素的Y'值,然后跟着存储的是每2*2方阵采样一次的U值,最后存储的是每2* ...
- 163邮箱 SMTP发送邮件注意点
在之前163邮箱注册的时候默认开通SMTP服务的,之后需要自己手动开始. 在配置的时候服务器的地址固定 用户名称就是你的邮箱 密码需要注意的是有的是你邮箱的密码,如果不对需要填写你的授权码!
- 学习JavaScript最佳实践方法
首先要说明的是,咱现在不是高手,最多还是一个半桶水,算是入了JS的门. 谈不上经验,都是一些教训. 这个时候有人要说,“靠,你丫半桶水,凭啥教我们”.您先别急着骂,先听我说. 你叫一个大学生去教小学数 ...
- 分布式爬虫框架XXL-CRAWLER
<分布式爬虫框架XXL-CRAWLER> 一.简介 1.1 概述 XXL-CRAWLER 是一个分布式爬虫框架.一行代码开发一个分布式爬虫,拥有"多线程.异步.IP动态代理.分布 ...