[luogu3388][割点]
题目链接
思路
真板子题。割点是指在一个无向图中,删去之后图将不再连通的点。可以用tarjan算法求。根据割点有两种情况,一种是根,一种是非根。如果不是根的就去判断在tarjan的时候当前节点所能到的最靠上的点。如果最靠上的点在当前点的下面,那么当前点就是割点,否则不是。对于是根的点。只要判断是不是可以从儿子中搜两遍就可以了。
代码
#include<cstdio>
#include<iostream>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long ll;
const int N = 20000 + 100,M = 100000+100;
ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
struct node {
int v,nxt;
}e[M * 2];
int ejs,head[N],dfn[N],low[N],ans[N];
void add(int u,int v) {
e[++ejs].v = v;e[ejs].nxt = head[u]; head[u] = ejs;
}
int now;
int js;
int rd;
void tarjan(int u) {
int rd = 0;
low[u] = dfn[u] = ++js;
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].v;
if(!dfn[v]) {
tarjan(v);
if(u == now)
rd++;
low[u] = min(low[u],low[v]);
if(low[v] >= dfn[u] && u != now) ans[u] = 1;//!!!
}
else low[u] = min(low[u],dfn[v]);
}
if(rd >= 2 && u == now ) ans[u] = 1;
return;
}
int main() {
int n = read(), m = read();
for(int i = 1;i <= m;++i) {
int u = read(), v = read();
add(u,v); add(v,u);
}
for(int i = 1;i <= n;++i) {
if(!dfn[i]) {
now = i;
tarjan(i);
}
}
int tot = 0;
for(int i =1; i <= n;++i)
if(ans[i]) tot++;
printf("%d\n",tot);
for(int i = 1; i <= n;++i)
if(ans[i]) printf("%d ",i);
return 0;
}
一言
心上有个人,才能活下去。 ——病相笔记
[luogu3388][割点]的更多相关文章
- luogu3388 【模板】割点(割顶)
模板题 #include <iostream> #include <cstdio> using namespace std; struct Edge{ int too, nxt ...
- HDU4738 tarjan割边|割边、割点模板
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4738 坑点: 处理重边 图可能不连通,要输出0 若求出的结果是0,则要输出1,因为最少要派一个人 #inc ...
- ACM/ICPC 之 Dinic+枚举最小割点集(可做模板)(POJ1815)
最小割的好题,可用作模板. //Dinic+枚举字典序最小的最小割点集 //Time:1032Ms Memory:1492K #include<iostream> #include< ...
- 洛谷P3388 【模板】割点
给出一个n个点,m条边的无向图,求图的割点. u是cut vertex的两个条件: 1.存在v使v及其所有后代没有反向边连回u的祖先 2.u是根且有两个以上子节点 dfs一遍 low[u]是u及其后代 ...
- 【UOJ#67】新年的毒瘤 Tarjan 割点
#67. 新年的毒瘤 UOJ直接黏贴会炸... 还是戳这里吧: http://uoj.ac/problem/67#tab-statement Solution 看到这题的标签就进来看了一眼. 想 ...
- hihoCoder 1183 连通性一·割边与割点(Tarjan求割点与割边)
#1183 : 连通性一·割边与割点 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 还记得上次小Hi和小Ho学校被黑客攻击的事情么,那一次攻击最后造成了学校网络数据的丢 ...
- {part1}DFN+LOW(tarjan)割点
什么是jarjan? 1)求割点 定义:在无向连通图中,如果去掉一个点/边,剩下的点之间不连通,那么这个点/边就被称为割点/边(或割顶/桥). 意义:由于割点和割边涉及到图的连通性,所以快速地求出割点 ...
- 图的割点 | | jzoj【P1230】 | | gdoi | |备用交换机
写在前面:我真的不知道图的割点是什么.... 看见ftp图论专题里面有个dfnlow的一个文档,于是怀着好奇的心情打开了这个罪恶的word文档,,然后就开始漫长的P1230的征讨战.... 图的割点是 ...
- 割点和桥---Tarjan算法
使用Tarjan算法求解图的割点和桥. 1.割点 主要的算法结构就是DFS,一个点是割点,当且仅当以下两种情况: (1)该节点是根节点,且有两棵以上的子树; (2)该节 ...
随机推荐
- w3c JS测试
到W3c的js测试里面溜达了一圈: 做错了几道题: 外部脚本必须包含<script>标签吗? 否!! 这里的外部脚本是指xx.js这个文件,在文件中写js代码是不需要包含script标签的 ...
- Android——AsyncTask
AsyncTask简单介绍 我们首先需要明确Android之所以有Handler和AsyncTask,都是为了不阻塞主线程(UI线程),且UI的更新只能在主线程中完成,因此异步处理是不可避免的.And ...
- python之路--字典
一. 字典 字典是以key:value的形式来保存数据的,用{}表示 字典的增删改查 字典的增加 dic = {"意大利": "李云龙", "美国&q ...
- import、export 和export default區別
https://www.cnblogs.com/xiaotanke/p/7448383.html
- codeforces496C
Removing Columns CodeForces - 496C You are given an n × m rectangular table consisting of lower case ...
- CentOS 安装、配置supervisord
负责在启动自身时启动管理的子进程,响应客户端的命令,重启崩溃或退出的子进程,记录子进程stdout和stderr输出,生成和处理子进程生命周期中的事件. 安装yum install superviso ...
- 使用JSch远程执行shell命令
package com.nihaorz.jsch; import com.jcraft.jsch.Channel; import com.jcraft.jsch.ChannelExec; import ...
- 基准对象object中的基础类型----列表 (四)
object有如下子类: CLASSES object basestring str unicode buffer bytearray classmethod complex dict enumera ...
- python中的logging模块学习
Python的logging模块 Logging的基本信息: l 默认的情况下python的logging模块打印到控制台,只显示大于等于warning级别的日志 l 日志级别:critical ...
- IDEA添加配置文件到classpath
突然发现有一种简单的办法: IDEA 的 Mark Directory as 右键项目中的一个文件夹,会出现目录[Mark Directory as]选择[Resources Root] 实现下面原文 ...