Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Gradient Checking)
声明:所有内容来自coursera,作为个人学习笔记记录在这里.
Gradient Checking
Welcome to the final assignment for this week! In this assignment you will learn to implement and use gradient checking.
You are part of a team working to make mobile payments available globally, and are asked to build a deep learning model to detect fraud--whenever someone makes a payment, you want to see if the payment might be fraudulent, such as if the user's account has been taken over by a hacker.
But backpropagation is quite challenging to implement, and sometimes has bugs. Because this is a mission-critical application, your company's CEO wants to be really certain that your implementation of backpropagation is correct. Your CEO says, "Give me a proof that your backpropagation is actually working!" To give this reassurance, you are going to use "gradient checking".
Let's do it!
# Packages
import numpy as np
from testCases import *
from gc_utils import sigmoid, relu, dictionary_to_vector, vector_to_dictionary, gradients_to_vector
1) How does gradient checking work?
Backpropagation computes the gradients ∂J∂θ∂J∂θ, where θθ denotes the parameters of the model. JJ is computed using forward propagation and your loss function.
Because forward propagation is relatively easy to implement, you're confident you got that right, and so you're almost 100% sure that you're computing the cost JJ correctly. Thus, you can use your code for computing JJ to verify the code for computing ∂J∂θ∂J∂θ.
Let's look back at the definition of a derivative (or gradient):
If you're not familiar with the "limε→0limε→0" notation, it's just a way of saying "when εε is really really small."
We know the following:
- ∂J∂θ∂J∂θ is what you want to make sure you're computing correctly.
- You can compute J(θ+ε)J(θ+ε) and J(θ−ε)J(θ−ε) (in the case that θθ is a real number), since you're confident your implementation for JJ is correct.
Lets use equation (1) and a small value for εε to convince your CEO that your code for computing ∂J∂θ∂J∂θ is correct!
2) 1-dimensional gradient checking
Consider a 1D linear function J(θ)=θxJ(θ)=θx. The model contains only a single real-valued parameter θθ, and takes xx as input.
You will implement code to compute J(.)J(.) and its derivative ∂J∂θ∂J∂θ. You will then use gradient checking to make sure your derivative computation for JJ is correct.

**Figure 1** : **1D linear model**
The diagram above shows the key computation steps: First start with xx, then evaluate the function J(x)J(x) ("forward propagation"). Then compute the derivative ∂J∂θ∂J∂θ ("backward propagation").
Exercise: implement "forward propagation" and "backward propagation" for this simple function. I.e., compute both J(.)J(.) ("forward propagation") and its derivative with respect to θθ ("backward propagation"), in two separate functions.
# GRADED FUNCTION: forward_propagation def forward_propagation(x, theta):
"""
Implement the linear forward propagation (compute J) presented in Figure 1 (J(theta) = theta * x) Arguments:
x -- a real-valued input
theta -- our parameter, a real number as well Returns:
J -- the value of function J, computed using the formula J(theta) = theta * x
""" ### START CODE HERE ### (approx. 1 line)
J = x*theta
### END CODE HERE ### return J
In [3]:
x, theta = 2, 4
J = forward_propagation(x, theta)
print ("J = " + str(J))
J = 8
Expected Output:
<table style=> ** J ** 8 </table>
Exercise: Now, implement the backward propagation step (derivative computation) of Figure 1. That is, compute the derivative of J(θ)=θxJ(θ)=θx with respect to θθ. To save you from doing the calculus, you should get dtheta=∂J∂θ=xdtheta=∂J∂θ=x.
# GRADED FUNCTION: backward_propagation def backward_propagation(x, theta):
"""
Computes the derivative of J with respect to theta (see Figure 1). Arguments:
x -- a real-valued input
theta -- our parameter, a real number as well Returns:
dtheta -- the gradient of the cost with respect to theta
""" ### START CODE HERE ### (approx. 1 line)
dtheta = x
### END CODE HERE ### return dtheta
In [5]:
x, theta = 2, 4
dtheta = backward_propagation(x, theta)
print ("dtheta = " + str(dtheta))
dtheta = 2
Expected Output:
| ** dtheta ** | 2 |
Exercise: To show that the backward_propagation() function is correctly computing the gradient ∂J∂θ∂J∂θ, let's implement gradient checking.
Instructions:
- First compute "gradapprox" using the formula above (1) and a small value of εε. Here are the Steps to follow:
- θ+=θ+εθ+=θ+ε
- θ−=θ−εθ−=θ−ε
- J+=J(θ+)J+=J(θ+)
- J−=J(θ−)J−=J(θ−)
- gradapprox=J+−J−2εgradapprox=J+−J−2ε
- Then compute the gradient using backward propagation, and store the result in a variable "grad"
- Finally, compute the relative difference between "gradapprox" and the "grad" using the following formula:
difference=∣∣grad−gradapprox∣∣2∣∣grad∣∣2+∣∣gradapprox∣∣2(2)(2)difference=∣∣grad−gradapprox∣∣2∣∣grad∣∣2+∣∣gradapprox∣∣2
You will need 3 Steps to compute this formula:
- 1'. compute the numerator using np.linalg.norm(...)
- 2'. compute the denominator. You will need to call np.linalg.norm(...) twice.
- 3'. divide them.
- If this difference is small (say less than 10−710−7), you can be quite confident that you have computed your gradient correctly. Otherwise, there may be a mistake in the gradient computation.
# GRADED FUNCTION: gradient_check def gradient_check(x, theta, epsilon = 1e-7):
"""
Implement the backward propagation presented in Figure 1. Arguments:
x -- a real-valued input
theta -- our parameter, a real number as well
epsilon -- tiny shift to the input to compute approximated gradient with formula(1) Returns:
difference -- difference (2) between the approximated gradient and the backward propagation gradient
""" # Compute gradapprox using left side of formula (1). epsilon is small enough, you don't need to worry about the limit.
### START CODE HERE ### (approx. 5 lines)
thetaplus = theta+epsilon # Step 1
thetaminus = theta-epsilon # Step 2
J_plus = x*thetaplus # Step 3
J_minus = x*thetaminus # Step 4
gradapprox = (J_plus-J_minus)/(2*epsilon) # Step 5
### END CODE HERE ### # Check if gradapprox is close enough to the output of backward_propagation()
### START CODE HERE ### (approx. 1 line)
grad = x
### END CODE HERE ### ### START CODE HERE ### (approx. 1 line)
numerator = np.linalg.norm(grad-gradapprox) # Step 1'
denominator = np.linalg.norm(grad)+np.linalg.norm(gradapprox) # Step 2'
difference = numerator/denominator # Step 3'
### END CODE HERE ### if difference < 1e-7:
print ("The gradient is correct!")
else:
print ("The gradient is wrong!") return difference
x, theta = 2, 4
difference = gradient_check(x, theta)
print("difference = " + str(difference))
The gradient is correct!
difference = 2.91933588329e-10
Expected Output: The gradient is correct!
| ** difference ** | 2.9193358103083e-10 |
Congrats, the difference is smaller than the 10−710−7 threshold. So you can have high confidence that you've correctly computed the gradient in backward_propagation().
Now, in the more general case, your cost function JJ has more than a single 1D input. When you are training a neural network, θθ actually consists of multiple matrices W[l]W[l] and biases b[l]b[l]! It is important to know how to do a gradient check with higher-dimensional inputs. Let's do it!
3) N-dimensional gradient checking
The following figure describes the forward and backward propagation of your fraud detection model.

**Figure 2** : **deep neural network**
*LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID*
Let's look at your implementations for forward propagation and backward propagation.
def forward_propagation_n(X, Y, parameters):
"""
Implements the forward propagation (and computes the cost) presented in Figure 3. Arguments:
X -- training set for m examples
Y -- labels for m examples
parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
W1 -- weight matrix of shape (5, 4)
b1 -- bias vector of shape (5, 1)
W2 -- weight matrix of shape (3, 5)
b2 -- bias vector of shape (3, 1)
W3 -- weight matrix of shape (1, 3)
b3 -- bias vector of shape (1, 1) Returns:
cost -- the cost function (logistic cost for one example)
""" # retrieve parameters
m = X.shape[1]
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
W3 = parameters["W3"]
b3 = parameters["b3"] # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
Z1 = np.dot(W1, X) + b1
A1 = relu(Z1)
Z2 = np.dot(W2, A1) + b2
A2 = relu(Z2)
Z3 = np.dot(W3, A2) + b3
A3 = sigmoid(Z3) # Cost
logprobs = np.multiply(-np.log(A3),Y) + np.multiply(-np.log(1 - A3), 1 - Y)
cost = 1./m * np.sum(logprobs) cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) return cost, cache
Now, run backward propagation.
def backward_propagation_n(X, Y, cache):
"""
Implement the backward propagation presented in figure 2. Arguments:
X -- input datapoint, of shape (input size, 1)
Y -- true "label"
cache -- cache output from forward_propagation_n() Returns:
gradients -- A dictionary with the gradients of the cost with respect to each parameter, activation and pre-activation variables.
""" m = X.shape[1]
(Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache dZ3 = A3 - Y
dW3 = 1./m * np.dot(dZ3, A2.T)
db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True) dA2 = np.dot(W3.T, dZ3)
dZ2 = np.multiply(dA2, np.int64(A2 > 0))
dW2 = 1./m * np.dot(dZ2, A1.T) * 2
db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True) dA1 = np.dot(W2.T, dZ2)
dZ1 = np.multiply(dA1, np.int64(A1 > 0))
dW1 = 1./m * np.dot(dZ1, X.T)
db1 = 4./m * np.sum(dZ1, axis=1, keepdims = True) gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,
"dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,
"dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} return gradients
You obtained some results on the fraud detection test set but you are not 100% sure of your model. Nobody's perfect! Let's implement gradient checking to verify if your gradients are correct.
How does gradient checking work?.
As in 1) and 2), you want to compare "gradapprox" to the gradient computed by backpropagation. The formula is still:
However, θθ is not a scalar anymore. It is a dictionary called "parameters". We implemented a function "dictionary_to_vector()" for you. It converts the "parameters" dictionary into a vector called "values", obtained by reshaping all parameters (W1, b1, W2, b2, W3, b3) into vectors and concatenating them.
The inverse function is "vector_to_dictionary" which outputs back the "parameters" dictionary.

**Figure 2** : **dictionary_to_vector() and vector_to_dictionary()**
You will need these functions in gradient_check_n()
We have also converted the "gradients" dictionary into a vector "grad" using gradients_to_vector(). You don't need to worry about that.
Exercise: Implement gradient_check_n().
Instructions: Here is pseudo-code that will help you implement the gradient check.
For each i in num_parameters:
- To compute
J_plus[i]:- Set θ+θ+ to
np.copy(parameters_values) - Set θ+iθi+ to θ+i+εθi++ε
- Calculate J+iJi+ using to
forward_propagation_n(x, y, vector_to_dictionary(θ+θ+)).
- Set θ+θ+ to
- To compute
J_minus[i]: do the same thing with θ−θ− - Compute gradapprox[i]=J+i−J−i2εgradapprox[i]=Ji+−Ji−2ε
Thus, you get a vector gradapprox, where gradapprox[i] is an approximation of the gradient with respect to parameter_values[i]. You can now compare this gradapprox vector to the gradients vector from backpropagation. Just like for the 1D case (Steps 1', 2', 3'), compute:
# GRADED FUNCTION: gradient_check_n def gradient_check_n(parameters, gradients, X, Y, epsilon = 1e-7):
"""
Checks if backward_propagation_n computes correctly the gradient of the cost output by forward_propagation_n Arguments:
parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
grad -- output of backward_propagation_n, contains gradients of the cost with respect to the parameters.
x -- input datapoint, of shape (input size, 1)
y -- true "label"
epsilon -- tiny shift to the input to compute approximated gradient with formula(1) Returns:
difference -- difference (2) between the approximated gradient and the backward propagation gradient
""" # Set-up variables
parameters_values, _ = dictionary_to_vector(parameters)
grad = gradients_to_vector(gradients)
num_parameters = parameters_values.shape[0]
J_plus = np.zeros((num_parameters, 1))
J_minus = np.zeros((num_parameters, 1))
gradapprox = np.zeros((num_parameters, 1)) # Compute gradapprox
for i in range(num_parameters): # Compute J_plus[i]. Inputs: "parameters_values, epsilon". Output = "J_plus[i]".
# "_" is used because the function you have to outputs two parameters but we only care about the first one
### START CODE HERE ### (approx. 3 lines)
thetaplus = np.copy(parameters_values) # Step 1
thetaplus[i][0] = thetaplus[i][0]+epsilon # Step 2
J_plus[i], _ = forward_propagation_n(X, Y, vector_to_dictionary(thetaplus)) # Step 3
### END CODE HERE ### # Compute J_minus[i]. Inputs: "parameters_values, epsilon". Output = "J_minus[i]".
### START CODE HERE ### (approx. 3 lines)
thetaminus = np.copy(parameters_values) # Step 1
thetaminus[i][0] = thetaminus[i][0]-epsilon # Step 2
J_minus[i], _ = forward_propagation_n(X, Y, vector_to_dictionary(thetaminus)) # Step 3
### END CODE HERE ### # Compute gradapprox[i]
### START CODE HERE ### (approx. 1 line)
gradapprox[i] = (J_plus[i]-J_minus[i])/(2*epsilon)
### END CODE HERE ### # Compare gradapprox to backward propagation gradients by computing difference.
### START CODE HERE ### (approx. 1 line)
numerator = np.linalg.norm(grad-gradapprox) # Step 1'
denominator = np.linalg.norm(grad)+np.linalg.norm(gradapprox) # Step 2'
difference = numerator/denominator # Step 3'
### END CODE HERE ### if difference > 2e-7:
print ("\033[93m" + "There is a mistake in the backward propagation! difference = " + str(difference) + "\033[0m")
else:
print ("\033[92m" + "Your backward propagation works perfectly fine! difference = " + str(difference) + "\033[0m") return difference
In [19]:
X, Y, parameters = gradient_check_n_test_case() cost, cache = forward_propagation_n(X, Y, parameters)
gradients = backward_propagation_n(X, Y, cache)
difference = gradient_check_n(parameters, gradients, X, Y)
There is a mistake in the backward propagation! difference = 0.285093156781
Expected output:
| ** There is a mistake in the backward propagation!** | difference = 0.285093156781 |
It seems that there were errors in the backward_propagation_n code we gave you! Good that you've implemented the gradient check. Go back to backward_propagation and try to find/correct the errors (Hint: check dW2 and db1). Rerun the gradient check when you think you've fixed it. Remember you'll need to re-execute the cell defining backward_propagation_n() if you modify the code.
Can you get gradient check to declare your derivative computation correct? Even though this part of the assignment isn't graded, we strongly urge you to try to find the bug and re-run gradient check until you're convinced backprop is now correctly implemented.
Note
- Gradient Checking is slow! Approximating the gradient with ∂J∂θ≈J(θ+ε)−J(θ−ε)2ε∂J∂θ≈J(θ+ε)−J(θ−ε)2ε is computationally costly. For this reason, we don't run gradient checking at every iteration during training. Just a few times to check if the gradient is correct.
- Gradient Checking, at least as we've presented it, doesn't work with dropout. You would usually run the gradient check algorithm without dropout to make sure your backprop is correct, then add dropout.
Congrats, you can be confident that your deep learning model for fraud detection is working correctly! You can even use this to convince your CEO. :)
What you should remember from this notebook:
- Gradient checking verifies closeness between the gradients from backpropagation and the numerical approximation of the gradient (computed using forward propagation).
- Gradient checking is slow, so we don't run it in every iteration of training. You would usually run it only to make sure your code is correct, then turn it off and use backprop for the actual learning process.
Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Gradient Checking)的更多相关文章
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Initialization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving D ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...
- Coursera, Deep Learning 2, Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Course
Train/Dev/Test set Bias/Variance Regularization 有下面一些regularization的方法. L2 regularation drop out da ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Assignment(Optimization Methods)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always u ...
- 《Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization》课堂笔记
Lesson 2 Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization 这篇文章其 ...
- [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
About this Course This course will teach you the "magic" of getting deep learning to work ...
- 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第一周(Practical aspects of Deep Learning) —— 4.Programming assignments:Gradient Checking
Gradient Checking Welcome to this week's third programming assignment! You will be implementing grad ...
- 吴恩达《深度学习》-课后测验-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-Week 1 - Practical aspects of deep learning(第一周测验 - 深度学习的实践)
Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 example ...
- 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记
第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...
随机推荐
- 10元买啤酒问题Java解法
10元去买啤酒,2元一瓶.每两个瓶可以换一瓶啤酒,每四个瓶盖可以换一瓶啤酒.最多买几瓶? public class Java { public static void main(String[] ar ...
- Docker自动补全容器名
Zsh Place the completion script in your /path/to/zsh/completion (typically ~/.zsh/completion/): 下载自动 ...
- bzoj4036[HAOI2015]set 按位或
Vfk的集合幂级数论文的例题….随机集合并为全集的期望集合数….这篇题解里的东西基本来自vfk的论文. 首先根据期望的线性性,我们把需要走第1步的概率(一定为1)加上需要走第2步的概率(等于走了第一步 ...
- 【洛谷P2860】冗余路径
题目大意:给定一个 N 个点,M 条边组成的无向图,求至少在图中加入几条边才能使得整个图没有割边. 题解:求出该无向图的所有边双联通分量,每个边双联通分量可以理解成无向图的一个极大环,对该无向图进行缩 ...
- PHP和PHP-FPM 配置文件优化
前言:乘着这次空闲,来记录下关于PHP和PHP-FPM配置文件的优化,也方便以后自己复习. 先说PHP的 1.PHP脚本执行时间 max_execution_time = 30 该选项设定PHP程序的 ...
- 第二十六节,滑动窗口和 Bounding Box 预测
上节,我们学习了如何通过卷积网络实现滑动窗口对象检测算法,但效率很低.这节我们讲讲如何在卷积层上应用这个算法. 为了构建滑动窗口的卷积应用,首先要知道如何把神经网络的全连接层转化成卷积层.我们先讲解这 ...
- python学习笔记-列表和字典
由于最近在看深度学习的代码,看到需要建立字典和列表来存储什么东西的时候,就想要去把字典和列表好好的了解清楚,其应用范围,差别,等等东西 首先我们来介绍,在python中存在如下的数据结构:列表list ...
- Linux下 文件操作(base)
1.新建文件夹 mkdir bigdata:在当前文件夹下新建bigdata文件夹: 2.显示当前文件夹全目录 pwd: 3.移动文件:mv /usr/etc/spark-2.3.1-bin-hado ...
- JVM与GC
1.JVM的内存分配参考文章: https://www.cnblogs.com/wangjzh/p/5258254.html 2. java之GC https://www.cnblogs.com/hn ...
- 新建体(2):create or replace object创建存储包、存储过程、函数
http://heisetoufa.iteye.com/blog/366957/ 创建一个package(包) 声明: create or replace package mpay_route is ...