现在有空整理一下关于深度学习中怎么加入dropout方法来防止测试过程的过拟合现象。

首先了解一下dropout的实现原理:

这些理论的解释在百度上有很多。。。。

这里重点记录一下怎么实现这一技术

参考别人的博客,主要http://www.cnblogs.com/dupuleng/articles/4340293.html

讲解一下用Matlab中的深度学习工具箱怎么实现dropout

首先要载入工具包。DeepLearn Toolbox是一个非常有用的matlab deep learning工具包,下载地址:https://github.com/rasmusbergpalm/DeepLearnToolbox

要使用它首先要将该工具包添加到matlab的搜索路径中,

1、将包复制到matlab 的toolbox中,作者的路径是D:\program Files\matlab\toolbox\

2、在matlab的命令行中输入:  

cd D:\program Files\matlab\toolbox\deepLearnToolbox\
addpath(gepath('D:\program Files\matlab\toolbox\deepLearnToolbox-master\')
savepath %保存,这样就不需要每次都添加一次

3、验证添加是否成功,在命令行中输入

which saesetup

果成功就会出现,saesetup.m的路径D:\program Files\matlab\toolbox\deepLearnToolbox-master\SAE\saesetup.m

4、使用deepLearnToolbox 工具包,做一个简单的demo,将autoencoder模型使用dropout前后的结果进行比较。

load mnist_uint8;
train_x = double(train_x(:,:)) / ;
test_x = double(test_x(:,:)) / ;
train_y = double(train_y(:,:));
test_y = double(test_y(:,:)); %% //实验一without dropout
rand('state',)
sae = saesetup([ ]);
sae.ae{}.activation_function = 'sigm';
sae.ae{}.learningRate = ;
opts.numepochs = ;
opts.batchsize = ;
sae = saetrain(sae , train_x , opts );
visualize(sae.ae{}.W{}(:,:end)'); nn = nnsetup([ ]);% //初步构造了一个输入-隐含-输出层网络,其中包括了
% //权值的初始化,学习率,momentum,激发函数类型,
% //惩罚系数,dropout等 nn.W{} = sae.ae{}.W{};
opts.numepochs = ; % //Number of full sweeps through data
opts.batchsize = ; % //Take a mean gradient step over this many samples
[nn, ~] = nntrain(nn, train_x, train_y, opts);
[er, ~] = nntest(nn, test_x, test_y);
str = sprintf('testing error rate is: %f',er);
fprintf(str); %% //实验二:with dropout
rand('state',)
sae = saesetup([ ]);
sae.ae{}.activation_function = 'sigm';
sae.ae{}.learningRate = ; opts.numepochs = ;
opts.bachsize = ;
sae = saetrain(sae , train_x , opts );
figure;
visualize(sae.ae{}.W{}(:,:end)'); nn = nnsetup([ ]);% //初步构造了一个输入-隐含-输出层网络,其中包括了
% //权值的初始化,学习率,momentum,激发函数类型,
% //惩罚系数,dropout等
nn.dropoutFraction = 0.5;
nn.W{} = sae.ae{}.W{};
opts.numepochs = ; % //Number of full sweeps through data
opts.batchsize = ; % //Take a mean gradient step over this many samples
[nn, L] = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
str = sprintf('testing error rate is: %f',er);
fprintf(str);

深度学习中dropout策略的理解的更多相关文章

  1. 深度学习中Dropout原理解析

    1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题 ...

  2. Hebye 深度学习中Dropout原理解析

    1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题 ...

  3. 2.深度学习中的batch_size的理解

    Batch_Size(批尺寸)是机器学习中一个重要参数,涉及诸多矛盾,下面逐一展开. 首先,为什么需要有 Batch_Size 这个参数? Batch 的选择,首先决定的是下降的方向.如果数据集比较小 ...

  4. 从极大似然估计的角度理解深度学习中loss函数

    从极大似然估计的角度理解深度学习中loss函数 为了理解这一概念,首先回顾下最大似然估计的概念: 最大似然估计常用于利用已知的样本结果,反推最有可能导致这一结果产生的参数值,往往模型结果已经确定,用于 ...

  5. 深度学习中 --- 解决过拟合问题(dropout, batchnormalization)

    过拟合,在Tom M.Mitchell的<Machine Learning>中是如何定义的:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比 ...

  6. 【转载】深度学习中softmax交叉熵损失函数的理解

    深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原 ...

  7. 深度学习中正则化技术概述(附Python代码)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 磐石 介绍 数据科学研究者们最常遇见的问题之一就是怎样避免过拟合. ...

  8. 深度学习中优化【Normalization】

    深度学习中优化操作: dropout l1, l2正则化 momentum normalization 1.为什么Normalization?     深度神经网络模型的训练为什么会很困难?其中一个重 ...

  9. zz详解深度学习中的Normalization,BN/LN/WN

    详解深度学习中的Normalization,BN/LN/WN 讲得是相当之透彻清晰了 深度神经网络模型训练之难众所周知,其中一个重要的现象就是 Internal Covariate Shift. Ba ...

随机推荐

  1. java jvm heap dump及 thread dump分析

    一.概念: 在进行java应用故障分析时,经常需要分析内存和cpu信息,也就说所谓的heap dump 和 thread dump heap dump: heap dump文件是一个二进制文件,需要工 ...

  2. randi( )函数--MATLAB

    randi()函数生成均匀分布的伪随机整数,范围为imin--imax,如果没指定imin,则默认为1. r = randi(imax,n):生成n*n的矩阵 r = randi(imax,m,n): ...

  3. Nginx(二)------nginx.conf 配置文件

    上一篇博客我们将 nginx 安装在 /usr/local/nginx 目录下,其默认的配置文件都放在这个目录的 conf 目录下,而主配置文件 nginx.conf 也在其中,后续对 nginx 的 ...

  4. VC++全屏

    Win32类型的全屏代码: 1. 去掉menu ATOM MyRegisterClass(HINSTANCE hInstance) { WNDCLASSEX wcex; wcex.cbSize = s ...

  5. Item 18: 使用srd::unique_ptr来管理独占所有权的资源

    本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 当你需要一个智能指针的时候,std::unique_ptr通常是最 ...

  6. Python_每日习题_0005_三数排序

    # 题目: # 输入三个整数x,y,z,请把这三个数由大到小输出. # 程序分析: 练练手就随便找个排序算法实现一下,偷懒就直接调用函数. #方法一:排序 raw = [] for i in rang ...

  7. python学习之第八篇——字典嵌套之字典中嵌套字典

    cities = { 'shanghai':{'country':'china','population':10000,'fact':'good'}, 'lendon':{'country':'eng ...

  8. Linux安装Apache常见报错(一)

    启动Apache提示报错:Could not reliably determine the server's fully qualified domain name, using localhost, ...

  9. R语言绘制直方图,

    直方图: 核密度函数: 练习题目1: 绘制出15位同学体重的直方图和核密度估计图,并与正态分布的概率密度函数作对比 代码如下: > w <- c(75.0, 64.0, 47.4, 66. ...

  10. 用HttpClient和用HttpURLConnection做爬虫发现爬取的代码少了的问题

    最近在学习用java来做爬虫但是发现不管用那种方式都是爬取的代码比网页的源码少了很多在网上查了很多都说是inputStream的缓冲区太小而爬取的网页太大导致读取出来的网页代码不完整,但是后面发现并不 ...