题目描述

求解 \(n\) 个盘子 \(4\) 座塔的 Hanoi 问题最少需要多少步

问题分析

考虑 \(3\) 座塔的 Hanoi 问题,记 \(f[i]\) 表示最少需要多少步, 则 \(f[i] = 2 * f[i - 1] + 1\) , 即把前 \(n - 1\) 个盘子从 \(A\) 移动到 \(B\), 然后把最下面的盘子移动到 \(C\), 最终把前面的 \(n - 1\) 个盘子移到 \(C\)

考虑把4个盘子的情况转移到三个的情况,则有 \[f[i] = \min_{1 \le i < n} \{2 * f[i] + d[n - i]\}\]

其中 \(f[1] = 1\).上式的意义是先把 \(i\) 个盘子在 \(4\) 她模式下移动到 \(B\) 柱,然后把 \(n-i\) 个盘子在 \(3\)塔模式下移到 \(D\) 柱。最后把 \(i\) 个盘子在 \(4\) 塔模式下移到 \(D\)柱,考虑所有可能的 \(I\) 取最小值,就是上述式子的意义。

推广

考虑 \(n\) 个盘子在 \(m\) 个塔下的最小值。式子与上述一样,增加一位表示第几种,复杂度 \(n^3\)

[POJ1958][Strange Tower of Hanoi]的更多相关文章

  1. POJ-1958 Strange Towers of Hanoi(线性动规)

    Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 2677 Accepted: 17 ...

  2. POJ1958 Strange Towers of Hanoi [递推]

    题目传送门 Strange Towers of Hanoi Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3117   Ac ...

  3. poj1958——Strange Towers of Hanoi

    The teacher points to the blackboard (Fig. 4) and says: "So here is the problem: There are thre ...

  4. poj1958 strange towers of hanoi

    说是递推,其实也算是个DP吧. 就是4塔的汉诺塔问题. 考虑三塔:先从a挪n-1个到b,把最大的挪到c,然后再把n-1个从b挪到c,所以是 f[i] = 2 * f[i-1] + 1; 那么4塔类似: ...

  5. POJ 1958 Strange Towers of Hanoi 解题报告

    Strange Towers of Hanoi 大体意思是要求\(n\)盘4的的hanoi tower问题. 总所周知,\(n\)盘3塔有递推公式\(d[i]=dp[i-1]*2+1\) 令\(f[i ...

  6. POJ 1958 Strange Towers of Hanoi

    Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3784 Accepted: 23 ...

  7. poj 3601 Tower of Hanoi

    Tower of Hanoi Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 1853   Accepted: 635 De ...

  8. python递归三战:Sierpinski Triangle、Tower of Hanoi、Maze Exploring

    本文已做成视频教程投稿b站(视频版相对文本版有一些改进),点击观看视频教程 本文主要通过三个实例来帮助大家理解递归(其展示动画已上传B站): 谢尔宾斯基三角形(Sierpinski Triangle) ...

  9. POJ1958:Strange Towers of Hanoi

    我对状态空间的理解:https://www.cnblogs.com/AKMer/p/9622590.html 题目传送门:http://poj.org/problem?id=1958 题目要我们求四柱 ...

随机推荐

  1. Unity3d 镜面折射 vertex and frag Shader源代码

    Unity3d 镜面折射  网上能找到的基本上是固定管道或表面渲染的shader. 特此翻译为顶点.片段渲染的Shader, 本源代码仅仅涉及shader与cs部分, 请自行下载NGUI  unity ...

  2. vue-preview使用

    1.安装 npm i vue-preview -S2.如果使用vue-cli生成的项目,需要修改webpack.base.conf.js文件中的loaders,添加一个loader{ test:/vu ...

  3. [git]git版本管理学习记录

    今天看到别人用这玩意记录自己的进度, 我也学习了一下. 1,适当的工具会提升效率 2,关注点还是得放在代码本身上. github/gitignore github提供了各种gitignore文件 有p ...

  4. python3专业版安装及破解

    1.网址 https://www.jetbrains.com/pycharm/download/#section=windows,打开页面,点击下载专业版 2.这是下载好的文件,双击运行即可. //详 ...

  5. unittest之suite测试集(测试套件)

    suite 这个表示测试集,不要放在class内,否则会提示"没有这样的测试方法在类里面 ",我觉得它唯一的好处就是调试的时候可以单独调试某个class而已,我一般不用它,调试时可 ...

  6. testng入门教程2用TestNG编写测试及执行测试

    编写TestNG测试基本上包括以下步骤: 测试和编写业务逻辑,在代码中插入TestNG的注解.. 添加一个testng.xml文件或build.xml中在测试信息(例如类名,您想要运行的组,等..) ...

  7. Twitter OA prepare: Two Operations

    准备T家OA,网上看的面经 最直接的方法,从target降到1,如果是奇数就减一,偶数就除2 public static void main(String[] args) { int a = shor ...

  8. redis error It was not possible to connect to the redis server(s); to create a disconnected multiplexer, disable AbortOnConnectFail. SocketFailure on PING

    应用redis出现如下错误 It was not possible to connect to the redis server(s); to create a disconnected multip ...

  9. 018-DNS解析过程与配置DNS服务

  10. html5<embed>的完整属性

    问题起因:网页中插入Flash,看了代码,然后呢,小小的学习下 <object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000& ...