题意

题目描述

在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。

考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x4≠x1,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。

现在给出一些约束满足问题,请分别对它们进行判定。

输入输出格式

输入格式:

从文件prog.in中读入数据。

输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。

对于每个问题,包含若干行:

第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若�e=0,则该约束条件为xi≠xj;

输出格式:

输出到文件 prog.out 中。

输出文件包括t行。

输出文件的第 k行输出一个字符串“ YES” 或者“ NO”(不包含引号,字母全部大写),“ YES” 表示输入中的第k个问题判定为可以被满足,“ NO” 表示不可被满足。

输入输出样例

输入样例#1:
复制

2
2
1 2 1
1 2 0
2
1 2 1
2 1 1
输出样例#1:
复制

NO
YES
输入样例#2:
复制

2
3
1 2 1
2 3 1
3 1 1
4
1 2 1
2 3 1
3 4 1
1 4 0
输出样例#2:
复制

YES
NO

说明

【样例解释1】

在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。

在第二个问题中,约束条件为:x1=x2,x1=x2。这两个约束条件是等价的,可以被同时满足。

【样例说明2】

在第一个问题中,约束条件有三个:x1=x2,x2=x3,x3=x1。只需赋值使得x1=x1=x1,即可同时满足所有的约束条件。

在第二个问题中,约束条件有四个:x1=x2,x2=x3,x3=x4,x4≠x1。由前三个约束条件可以推出x1=x2=x3=x4,然而最后一个约束条件却要求x1≠x4,因此不可被满足。

【数据范围】

【时限2s,内存512M】

分析

离散化后,先处理相等的,用并查集。再看看不等的是否位于同一并查集中即可。

时间复杂度\(O(n \log n)\)

#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
using namespace std; co int N=1e5+1;
int n,m,a[N*2],fa[N*2];
struct P{
int i,j;
bool e;
}p[N]; int get(int x) {return fa[x]==x?x:fa[x]=get(fa[x]);} int find(int x) {return lower_bound(a+1,a+m+1,x)-a;} void cxzdfx(){
read(n);
for(int i=1;i<=n;++i){
read(p[i].i),read(p[i].j),read(p[i].e);
a[2*i-1]=p[i].i,a[2*i]=p[i].j;
}
sort(a+1,a+2*n+1),m=unique(a+1,a+2*n+1)-(a+1);
for(int i=1;i<=m;++i) fa[i]=i;
for(int i=1;i<=n;++i)
if(p[i].e) fa[get(find(p[i].i))]=get(find(p[i].j));
for(int i=1;i<=n;++i)
if(!p[i].e&&get(find(p[i].i))==get(find(p[i].j)))
return puts("NO"),void();
puts("YES");
} int main(){
// freopen(".in","r",stdin),freopen(".out","w",stdout);
int kase=read<int>();
while(kase--) cxzdfx();
return 0;
}

LG1955 [NOI2015]程序自动分析的更多相关文章

  1. codevs4600 [NOI2015]程序自动分析==洛谷P1955 程序自动分析

    4600 [NOI2015]程序自动分析  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 在实现 ...

  2. Codevs 4600 [NOI2015]程序自动分析

    4600 [NOI2015]程序自动分析 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 黄金 Gold 传送门 题目描述 Description 在实现程序自动分析的过程中,常常需 ...

  3. BZOJ4195 [Noi2015]程序自动分析(离散化+并查集)

    4195: [Noi2015]程序自动分析 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 689  Solved: 296 [Submit][Sta ...

  4. BZOJ4195 NOI2015 程序自动分析

    4195: [Noi2015]程序自动分析 Time Limit: 10 Sec Memory Limit: 512 MB Description 在实现程序自动分析的过程中,常常需要判定一些约束条件 ...

  5. 【BZOJ4195】[Noi2015]程序自动分析 并查集

    [BZOJ4195][Noi2015]程序自动分析 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3 ...

  6. bzoj 4195: [Noi2015]程序自动分析

    4195: [Noi2015]程序自动分析 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表 ...

  7. [UOJ#127][BZOJ4195][NOI2015]程序自动分析

    [UOJ#127][BZOJ4195][NOI2015]程序自动分析 试题描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2, ...

  8. [NOI2015]程序自动分析(并查集,离散化)

    [NOI2015]程序自动分析 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,-代表程序中出现的 ...

  9. [NOI2015]程序自动分析(并查集)

    题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变 ...

随机推荐

  1. LeetCode--083--删除排序链表中的重复元素

    问题描述: 给定一个排序链表,删除所有重复的元素,使得每个元素只出现一次. 示例 1: 输入: 1->1->2 输出: 1->2 示例 2: 输入: 1->1->2-&g ...

  2. C++中的初始化参数列表

    c++中以下几种情况的变量的初始化不可以写在构造函数里,而是要写在初始化参数列表中 1.const常量 class AA { public : const int num; public : AA() ...

  3. nyoj-1367-河南省第十一届省赛-E物流配送-最小费用流

    1367-物流配送 内存限制:128MB 时间限制:8000ms 特判: No通过数:1 提交数:1 难度:4 题目描述: 物流配送是物流活动中一种非单一的业务形式,它与物品流动.资金流动紧密结合.备 ...

  4. JavaScript 对象的使用

    JavaScript支持面向对象的编程方法. 2.9.1 window对象(窗口对象)的常用方法 内部函数 alert ( ) ,实际上是 window 对象的方法,写成全称为 window . al ...

  5. Centos7上部署openstack mitaka配置详解(将疑难点都进行划分)

    在配置openstack项目时很多人认为到处是坑,特别是新手,一旦进坑没有人指导,身体将会感觉一次次被掏空,作为菜鸟的我也感同身受,因为已经被掏空n次了. 以下也是我将整个openstack配置过程进 ...

  6. spark出现task不能序列化错误的解决方法 org.apache.spark.SparkException: Task not serializable

    import org.elasticsearch.cluster.routing.Murmur3HashFunction; import org.elasticsearch.common.math.M ...

  7. jsp jstl标签库核心标签

    JSTL标签库介绍 JSTL标签库的使用时为了弥补html标签的不足,规范自定义标签的使用而诞生的.使用标签的目的就是不希望在jsp页面中出现java逻辑代码 全称:JSTL标签库分类 核心标签库使用 ...

  8. SQL Server 数据库获取架构信息

    得到数据库存储过程列表: select * from dbo.sysobjects where OBJECTPROPERTY(id, N'IsProcedure') = 1 order by name ...

  9. openshift rhc

    Microsoft Windows [Version 6.1.7601]Copyright (c) 2009 Microsoft Corporation. All rights reserved. C ...

  10. Swift网络封装库Moya中文手册之Providers

    Providers 使用Moya,你可以通过一个 MoyaProvider 的实例发送所有网络请求,通过枚举来指定你要访问的具体API.在配置你的 Endpoint 之后,你差不多就做好了基础配置: ...