P3216 [HNOI2011]数学作业

题目描述

小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题:

给定正整数 NN 和 MM ,要求计算 Concatenate (1 .. N) Concatenate(1..N) ModMod MM 的值,其中 Concatenate (1 .. N) Concatenate(1..N) 是将所有正整数 1, 2, …, N1,2,…,N 顺序连接起来得到的数。例如, N = 13N=13 , Concatenate (1 .. N)=12345678910111213Concatenate(1..N)=12345678910111213 .小C 想了大半天终于意识到这是一道不可能手算出来的题目,于是他只好向你求助,希望你能编写一个程序帮他解决这个问题。

输入输出格式

输入格式:

从文件input.txt中读入数据,输入文件只有一行且为用空格隔开的两个正整数N和M,其中30%的数据满足 1≤N≤10000001≤N≤1000000 ;100%的数据满足 1≤N≤10^{18}1≤N≤$ 10^18 \(
且 1≤M≤\) 10^9 \(1≤M≤1\) 0^9 $

.

输出格式:

输出文件 output.txt 仅包含一个非负整数,表示 Concatenate (1 .. N)Concatenate(1..N) ModMod MM 的值。

输入输出样例

输入样例#1:

13 13

输出样例#1:

4

递推式容易得到:$$ f[i+1]=f[i]*10^{k}+i+1 $$

范围 $ n<=10^{18} $

线性算法肯定TLE,那就考虑log的算法(快速幂或者倍增)

考虑把递推式转换成矩阵

递推式有三项

经验告诉我们,也许要用到\(3*3\)的矩阵

经过一系列 碰数,凑数,计算

我们得到矩阵

\[\begin{pmatrix} f[n+1],n+1,1 \end{pmatrix}=
\begin{pmatrix} f[n],n,1 \end{pmatrix} \times \begin{bmatrix} 10^{k},0,0\\1,1,0\\1,1,1 \end{bmatrix} \]

从而可以得到

\[\begin{pmatrix} f[n+1],n+1,1 \end{pmatrix}=
=\begin{pmatrix} f[1],1,1 \end{pmatrix} \times \begin{bmatrix} 10^{k},0,0\\1,1,0\\1,1,1\end{bmatrix}^{n-1}\]

ps:k是位数

k虽然是不确定的,但k的范围却很小 <=18

所以分开做就可以了

#include <iostream>
#include <cstdio>
#include <cstring>
#define ll long long
using namespace std;
ll n,mod;
struct node {
ll m[4][4];
} ans,ss,a;
node mul(node x,node y) {
node c= {};
for(int i=1; i<=3; ++i)
for(int j=1; j<=3; ++j)
for(int k=1; k<=3; ++k)
c.m[i][j]=(c.m[i][j]+(x.m[i][k]*y.m[k][j])%mod)%mod;
return c;
}
void fpow(ll p) {
while(p) {
if(p&1) ans=mul(ans,ss);
ss=mul(ss,ss);
p>>=1;
}
}
int main() {
//全部开long long不要质疑
cin>>n>>mod;
ans.m[1][3]=a.m[1][1]=a.m[2][1]=a.m[2][2]=a.m[3][1]=a.m[3][2]=a.m[3][3]=1;
for(ll i=1,j; i<=n; i=j+1) {
j=i*10-1;
if(j>n) j=n;
a.m[1][1]=a.m[1][1]*(ll)10%mod;
ss=a;
fpow(j-i+1);
}
printf("%lld\n",ans.m[1][1]%mod);
return 0;
}

自己还是太弱,最后处理菜的要死

P3216 [HNOI2011]数学作业 (矩阵快速幂)的更多相关文章

  1. BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )

    BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...

  2. [HNOI2011]数学作业 矩阵快速幂 BZOJ 2326

    题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 NNN 和 MMM ,要求计算Concatenate(1..N) Concatenate (1 .. N) ...

  3. 洛谷P3216 [HNOI2011] 数学作业 [矩阵加速,数论]

    题目传送门 数学作业 题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N和 M,要求计算 Concatenate (1 .. N)Mod M 的值,其中 C ...

  4. [luogu P3216] [HNOI2011]数学作业

    [luogu P3216] [HNOI2011]数学作业 题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M,要求计算 Concatenate (1 ...

  5. [ An Ac a Day ^_^ ] hdu 4565 数学推导+矩阵快速幂

    从今天开始就有各站网络赛了 今天是ccpc全国赛的网络赛 希望一切顺利 可以去一次吉大 希望还能去一次大连 题意: 很明确是让你求Sn=[a+sqrt(b)^n]%m 思路: 一开始以为是水题 暴力了 ...

  6. P3216 [HNOI2011]数学作业

    题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M ,要求计算Concatenate (1 .. N) Mod M 的值,其中 Concatenat ...

  7. [HNOI2011]数学作业 --- 矩阵优化

    [HNOI2011]数学作业 题目描述: 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M ,要求计算\(Concatenate(1..N)\; Mod\; ...

  8. 洛谷P3216 [HNOI2011]数学作业

    题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M,要求计算 Concatenate (1 .. N) Mod M 的值,其中 Concatenat ...

  9. 2018.09.26 bzoj5221: [Lydsy2017省队十连测]偏题(数学推导+矩阵快速幂)

    传送门 由于没有考虑n<=1的情况T了很久啊. 这题很有意思啊. 考试的时候根本不会,骗了30分走人. 实际上变一个形就可以了. 推导过程有点繁杂. 直接粘题解上的请谅解. 不得不说这个推导很妙 ...

随机推荐

  1. mysql八:视图、触发器、事务、存储过程、函数

    一 视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,可以将该结果集当做表来使用. 使用视图我们可以把查询过程中的 ...

  2. Ball---hdu5821(排序)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5821 题意:有n个盒子,每个盒子又一个值 a[i] 如果 a[i] 大于 0 说明盒子里面有 1 个颜 ...

  3. javascript 调用cookies

    cookie   用来保存信息,并且与服务器互动,因此前端后端都可以使用cookie     值得一提的是:虽然cookie是以文件的形式存储在客户端的电脑上, 但浏览器只会让创建cookie的网站访 ...

  4. ListView多种item注意以及自己出现的莫名其妙的错误

    如果ListView不懂,请绕路 1.ListView添加多个item必须用到的两个方法 getViewTypeCount一共有多少种item,我这里写的两种 getItemViewType当前pos ...

  5. 网站被XMR恶意挖矿

    发现: 网站首页被恶意更改 网站的关键词和描述被恶意更改 服务器和只要访问此服务器上的网页cup 直线上升100% 排查代码发现js 文件被恶意更改,访问了挖矿网站 操作:删除js 里面的恶意代码,更 ...

  6. 验证 Googlebot (检查是否为真的Google机器人)

    您可以验证访问您服务器的网页抓取工具是否确实是 Googlebot(还是其他 Google 用户代理).如果您担心自称是 Googlebot 的垃圾内容发布者或其他麻烦制造者访问您的网站,则会发现该方 ...

  7. js随机点名系统

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. Summary: difference between public, default, protected, and private key words

    According to Java Tutorial: Controlling Access to Members of a Class Access level modifiers determin ...

  9. 【剑指Offer学习】【面试题3 :二维数组中的查找】

    package 二维数组查找; public class Test03 { /** * 在一个二维数组中,每一行都按 package 二维数组查找; public class Test03 { /** ...

  10. C#中NPOI操作excel之读取和写入excel数据

    一.下载引用 下载需要引用的dll,即:NPOI.dll,NPOI.OOXML.dll,NPOI.OpenXml4Net.dll,ICSharpCode.SharpZipLib.dll(office2 ...