MT【63】证明不是周期函数
证明$f(x)=sinx^2$不是周期函数.
反证:假设是周期函数,周期为$T,T>0$.
$$f(0)=f(T)\Rightarrow sinT^2=0\Rightarrow T^2=k_1\pi,k_1\in N^{*}$$
$$f(\sqrt{2}T)=f(\sqrt{2}T+T)\Rightarrow sin2T^2=sin(\sqrt{2}T+T)^2$$
$$\Rightarrow 0=sin2k_1\pi=sin(\sqrt{2}T+T)^2$$
$$\Rightarrow(\sqrt{2}T+T)^2=k_2\pi,k_2\in N^{*}$$
$$\Rightarrow (\sqrt{2}+1)^2=\frac{k_2}{k_1}$$
等式左边为无理数$\ne$等式右边为有理数,矛盾,故假设不成立。$\therefore f(x)=sinx^2$不是周期函数.
评:此类证明非周期的题,套路基本都是反证,取一些特殊值,得出矛盾.
MT【63】证明不是周期函数的更多相关文章
- 深入理解Plasma(四)Plasma Cash
这一系列文章将围绕以太坊的二层扩容框架 Plasma,介绍其基本运行原理,具体操作细节,安全性讨论以及未来研究方向等.本篇文章主要介绍在 Plasma 框架下的项目 Plasma Cash. 在上一篇 ...
- 密码学笔记-一段base64wp
CTF--练习平台 例题: 一段Base64 flag格式:flag{xxxxxxxxxxxxx} 附件: base64.txt 1.base64解码:http://base64.xpcha.com/ ...
- MT【206】证明整数数列
已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a ...
- MT【39】构造二次函数证明
这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二 ...
- MT【33】证明琴生不等式
解答:这里数学归纳法证明时指出关键的变形. 评:撇开琴生不等式自身的应用和意义外,单单就这个证明也是一道非常不错的练习数学归纳法的经典题目.
- MT【19】舒尔不等式设计理念及证明
评:舒尔的想法是美妙的,当然他本身也有很多意义,在机械化证明的理念里,它也占据了一方田地.
- MT【18】幂平均不等式的证明
评:证明时对求导要求较高,利用这个观点,对平时熟悉的调和平均,几何平均,算术平均,平方平均有了更深 刻的认识.
- MT【16】证明无理数(2)
证明:$sin10^0$为无理数. 分析:此处用$sin$的三倍角公式,结合多项式有有理根必须满足的系数之间的关系可以证明. 评:证明$sin9^0$为无理数就不那么简单.思路:先利用$sin54^0 ...
- MT【15】证明无理数(1)
证明:$tan3^0$是无理数. 分析:证明无理数的题目一般用反证法,最经典的就是$\sqrt{2}$是无理数的证明. 这里假设$tan3^0$是有理数,利用二倍角公式容易得到$tan6^0,tan1 ...
随机推荐
- Literal 字面值 字面量 的理解
Literal 字面值 字面量 Literal, 在程序语言中,指表示某种数据值的符码.如,123 是整数值符码, 3.14 是浮点值符码,abcd 是字串值符码,True, False, 是逻辑值符 ...
- java中的SHA单向加密
SHA全名叫做安全散列算法,是FIPS所认证的安全散列算法.能计算出一个数字消息所对应到的,长度固定的字符串(又称消息摘要)的算法.且若输入的消息不同,它们对应到不同字符串的机率很高. package ...
- ASP.NET Core StaticFiles中间件修改wwwroot(转载)
ASP.NET Core 开发,中间件(StaticFiles)的使用,我们开发一款简易的静态文件服务器.告别需要使用文件,又需要安装一个web服务器.现在随时随地打开程序即可使用,跨平台,方便快捷. ...
- svg画弧
http://www.pindari.com/svg-arc.html https://jsfiddle.net/8robssa0/ http://jsbin.com/giyotacuxu/edit? ...
- Luogu P1494 [国家集训队]小Z的袜子
比较简单的莫队题,主要是为了熟练板子. 先考虑固定区间时我们怎么计算,假设区间\([l,r]\)内颜色为\(i\)的袜子有\(cnt_i\)只,那么对于颜色\(i\)来说,凑齐一双的情况个数为: \( ...
- eclipse取消空格、等号、分号自动录入
默认eclipse中按空格.等号.分号等键时,会将提示框中的文字输入到编辑内容中,但是很多时候我们并不希望录入,可如下设置. 1.打开 Eclipse -> Window -> Perfe ...
- CentOS上yum方式安装配置LNMP
实验环境 一台最小化安装的CentOS 7.3虚拟机 安装软件包 yum install -y epel-* yum install -y nginx mariadb-server php php-m ...
- 配置Nginx反向代理WebSocket,以代理noVNC为例
什么是Nginx Nginx (engine x) 是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP服务器. Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮 ...
- Http指南(1)
网关:是一种特殊的服务器,作为其他服务器的中间实体使用; Agent代理:所有发布web请求的应用程序都是HTTP Agent代理.Web浏览器其实就是一种代理; HTTP报文是在HTTP应用程序之间 ...
- SqlBulkCopy简单封装,让批量插入更方便
关于 SqlServer 批量插入的方式,前段时间也有大神给出了好几种批量插入的方式及对比测试(http://www.cnblogs.com/jiekzou/p/6145550.html),估计大家也 ...