证明$f(x)=sinx^2$不是周期函数.

反证:假设是周期函数,周期为$T,T>0$.

$$f(0)=f(T)\Rightarrow sinT^2=0\Rightarrow T^2=k_1\pi,k_1\in N^{*}$$

$$f(\sqrt{2}T)=f(\sqrt{2}T+T)\Rightarrow sin2T^2=sin(\sqrt{2}T+T)^2$$

$$\Rightarrow 0=sin2k_1\pi=sin(\sqrt{2}T+T)^2$$

$$\Rightarrow(\sqrt{2}T+T)^2=k_2\pi,k_2\in N^{*}$$

$$\Rightarrow (\sqrt{2}+1)^2=\frac{k_2}{k_1}$$

等式左边为无理数$\ne$等式右边为有理数,矛盾,故假设不成立。$\therefore f(x)=sinx^2$不是周期函数.

评:此类证明非周期的题,套路基本都是反证,取一些特殊值,得出矛盾.

MT【63】证明不是周期函数的更多相关文章

  1. 深入理解Plasma(四)Plasma Cash

    这一系列文章将围绕以太坊的二层扩容框架 Plasma,介绍其基本运行原理,具体操作细节,安全性讨论以及未来研究方向等.本篇文章主要介绍在 Plasma 框架下的项目 Plasma Cash. 在上一篇 ...

  2. 密码学笔记-一段base64wp

    CTF--练习平台 例题: 一段Base64 flag格式:flag{xxxxxxxxxxxxx} 附件: base64.txt 1.base64解码:http://base64.xpcha.com/ ...

  3. MT【206】证明整数数列

    已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a ...

  4. MT【39】构造二次函数证明

    这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二 ...

  5. MT【33】证明琴生不等式

    解答:这里数学归纳法证明时指出关键的变形. 评:撇开琴生不等式自身的应用和意义外,单单就这个证明也是一道非常不错的练习数学归纳法的经典题目.

  6. MT【19】舒尔不等式设计理念及证明

    评:舒尔的想法是美妙的,当然他本身也有很多意义,在机械化证明的理念里,它也占据了一方田地.

  7. MT【18】幂平均不等式的证明

    评:证明时对求导要求较高,利用这个观点,对平时熟悉的调和平均,几何平均,算术平均,平方平均有了更深 刻的认识.

  8. MT【16】证明无理数(2)

    证明:$sin10^0$为无理数. 分析:此处用$sin$的三倍角公式,结合多项式有有理根必须满足的系数之间的关系可以证明. 评:证明$sin9^0$为无理数就不那么简单.思路:先利用$sin54^0 ...

  9. MT【15】证明无理数(1)

    证明:$tan3^0$是无理数. 分析:证明无理数的题目一般用反证法,最经典的就是$\sqrt{2}$是无理数的证明. 这里假设$tan3^0$是有理数,利用二倍角公式容易得到$tan6^0,tan1 ...

随机推荐

  1. LOJ564 613的天网 构造

    题目传送门 题意:给出一个$N \times N \times N$的方块,你可以在每一个$1 \times 1 \times 1的方块上放上一个摄像头,摄像头的监视范围为6个方向的无限远距离.问最少 ...

  2. 重装系统之制作U盘启动盘

    准备: 1.需要一个大于4G的U盘. 2.一个原版系统. 3.制作U盘启动盘的工具—ultraliso. 一.一个大于4G的U盘 制作启动盘将会格式化U盘,记得做好备份. 二.一个原版系统 至于你要装 ...

  3. Docker(三):Dockerfile 命令详解

    上一篇文章Docker(二):Dockerfile 使用介绍介绍了 Dockerfile 的使用,这篇文章我们来继续了解 Dockerfile ,学习 Dockerfile 各种命令的使用. Dock ...

  4. Linux下部署Samba服务环境的操作记录

    关于Linux和Windows系统之间的文件传输,很多人选择使用FTP,相对较安全,但是有时还是会出现一些问题,比如上传文件时,文件名莫名出现乱码,文件大小改变等问题.相比较来说,使用Samba作为文 ...

  5. Nginx+upstream针对后端服务器容错的运维笔记

    熟练掌握Nginx负载均衡的使用对运维人员来说是极其重要的!下面针对Nignx负载均衡upstream容错机制的使用做一梳理性说明: 一.nginx的upstream容错 1)nginx 判断节点失效 ...

  6. git-两小时简单使用教程

    两小时学会Git玩转Github 1. 了解Git和Github 1.1什么是Git Git是一个免费.开源的版本控制软件 1.2什么是版本控制系统 版本控制是一种记录一个或若干个文件内容变化,以便将 ...

  7. PLSQL使用技巧 如何设置默认显示My Objects、记住密码等

    https://www.cnblogs.com/yilinzi/p/7144852.html PL/SQL Developer实现双击table查询 https://blog.csdn.net/zhy ...

  8. 如何在java项目中使用lucene

    lucene是一个开源的全文检索引擎工具包,但它不是一个成型的搜索引擎,它的功能就是负责将文本数据按照某种分词算法进行分词,分词后的结果存储在索引库中,然后根据关键字从索引库检检索. 那么应该如何使用 ...

  9. SuperMaze(Hello World 团队)Alpha版使用说明

    一.产品介绍 超级迷宫是一款android的手机游戏,目前我们已经在PC 端成功实现大体功能,虽然虽然迷宫游戏不少但我们的游戏渐渐的会假如自己的特色功能,尽量吸引用户,通过游戏开发智力,通过游戏打发无 ...

  10. 第三个spring冲刺第10天

    进入最后阶段冲刺最后一天了,基本的需求已经完成了,最后的布局问题也解决了,我们的软件正式推出了.