Caffe 使用记录(五):math_functions 分析
本文转载自 Caffe源码(一):math_functions 分析
math_function 定义了caffe 中用到的一些矩阵操作和数值计算的一些函数,这里以float类型为例做简单的分析
1. caffe_cpu_gemm 函数:
template<>
void caffe_cpu_gemm<float>(const CBLAS_TRANSPOSE TransA,
const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K,
const float alpha, const float* A, const float* B, const float beta,
float* C) {
int lda = (TransA == CblasNoTrans) ? K : M;
int ldb = (TransB == CblasNoTrans) ? N : K;
cblas_sgemm(CblasRowMajor, TransA, TransB, M, N, K, alpha, A, lda, B,
ldb, beta, C, N);
}
功能: C=alpha*A*B+beta*C
A,B,C 是输入矩阵(一维数组格式)
CblasRowMajor :数据是行主序的(二维数据也是用一维数组储存的)
TransA, TransB:是否要对A和B做转置操作(CblasTrans CblasNoTrans)
M: A、C 的行数
N: B、C 的列数
K: A 的列数, B 的行数
lda : A的列数(不做转置)行数(做转置)
ldb: B的列数(不做转置)行数(做转置)
2. caffe_cpu_gemv 函数:
template <>
void caffe_cpu_gemv<float>(const CBLAS_TRANSPOSE TransA, const int M,
const int N, const float alpha, const float* A, const float* x,
const float beta, float* y) {
cblas_sgemv(CblasRowMajor, TransA, M, N, alpha, A, N, x, , beta, y, );
}
功能: y=alpha*A*x+beta*y
其中X和Y是向量,A 是矩阵
M:A 的行数
N:A 的列数
cblas_sgemv 中的 参数1 表示对X和Y的每个元素都进行操作
3.caffe_axpy 函数:
template <>
void caffe_axpy<float>(const int N, const float alpha, const float* X,
float* Y) { cblas_saxpy(N, alpha, X, , Y, ); }
功能: Y=alpha*X+Y
N:为X和Y中element的个数
4.caffe_set 函数:
template <typename Dtype>
void caffe_set(const int N, const Dtype alpha, Dtype* Y) {
if (alpha == ) {
memset(Y, , sizeof(Dtype) * N); // NOLINT(caffe/alt_fn)
return;
}
for (int i = ; i < N; ++i) {
Y[i] = alpha;
}
}
功能:用常数 alpha 对 Y 进行初始化
函数 void *memset(void *buffer, char c, unsigned count) 一般为新申请的内存做初始化,功能是将buffer所指向内存中的每个字节的内容全部设置为c指定的ASCII值, count为块的大小
5.caffe_add_scalar 函数:
template <>
void caffe_add_scalar(const int N, const float alpha, float* Y) {
for (int i = ; i < N; ++i) {
Y[i] += alpha;
}
}
功能: 给 Y 的每个 element 加上常数 alpha
6.caffe_copy 函数:
template <typename Dtype>
void caffe_copy(const int N, const Dtype* X, Dtype* Y) {
if (X != Y) {
if (Caffe::mode() == Caffe::GPU) {
#ifndef CPU_ONLY
// NOLINT_NEXT_LINE(caffe/alt_fn)
CUDA_CHECK(cudaMemcpy(Y, X, sizeof(Dtype) * N, cudaMemcpyDefault));
#else
NO_GPU;
#endif
} else {
memcpy(Y, X, sizeof(Dtype) * N); // NOLINT(caffe/alt_fn)
}
}
}
函数 void *memcpy(void *dest, void *src, unsigned int count) 把src所指向的内存区域 copy到dest所指向的内存区域, count为块的大小
7.caffe_scal 函数:
template <>
void caffe_scal<float>(const int N, const float alpha, float *X) {
cblas_sscal(N, alpha, X, );
}
功能:X = alpha*X
N: X中element的个数
8.caffeine_cup_axpby 函数:
template <>
void caffe_cpu_axpby<float>(const int N, const float alpha, const float* X,
const float beta, float* Y) {
cblas_saxpby(N, alpha, X, , beta, Y, );
}
功能:Y= alpha*X+beta*Y
9.caffe_add、 caffe_sub、 caffe_mul、 caffe_div 函数:
template <>
void caffe_add<float>(const int n, const float* a, const float* b,
float* y) {
vsAdd(n, a, b, y);
}
template <>
void caffe_sub<float>(const int n, const float* a, const float* b,
float* y) {
vsSub(n, a, b, y);
} template <>
void caffe_mul<float>(const int n, const float* a, const float* b,
float* y) {
vsMul(n, a, b, y);
} template <>
void caffe_div<float>(const int n, const float* a, const float* b,
float* y) {
vsDiv(n, a, b, y);
}
功能:这四个函数分别实现element-wise的加减乘除(y[i] = a[i] + - * \ b[i])
10.caffe_powx、 caffe_sqr、 caffe_exp、 caffe_abs 函数:
template <>
void caffe_powx<float>(const int n, const float* a, const float b,
float* y) {
vsPowx(n, a, b, y);
} template <>
void caffe_sqr<float>(const int n, const float* a, float* y) {
vsSqr(n, a, y);
} template <>
void caffe_exp<float>(const int n, const float* a, float* y) {
vsExp(n, a, y);
} template <>
void caffe_abs<float>(const int n, const float* a, float* y) {
vsAbs(n, a, y);
}
功能 : 同样是element-wise操作,分别是y[i] = a[i] ^ b, y[i] = a[i]^2,y[i] = exp(a[i] ),y[i] = |a[i] |
11.int caffe_rng_rand 函数:
unsigned int caffe_rng_rand() {
return (*caffe_rng())();
}
功能:返回一个随机数
12.caffe_nextafer 函数:
template <typename Dtype>
Dtype caffe_nextafter(const Dtype b) {
return boost::math::nextafter<Dtype>(
b, std::numeric_limits<Dtype>::max());
}
功能 : 返回 b 最大方向上可以表示的最接近的数值。
13.caffe_cpu_strided_dot 函数:
template <>
double caffe_cpu_strided_dot<double>(const int n, const double* x,
const int incx, const double* y, const int incy) {
return cblas_ddot(n, x, incx, y, incy);
}
功能: 返回 vector X 和 vector Y 的内积。
incx, incy : 步长,即每隔incx 或 incy 个element 进行操作。
14.caffe_cpu_hamming_distance 函数:
template <>
int caffe_cpu_hamming_distance<float>(const int n, const float* x,
const float* y) {
int dist = ;
for (int i = ; i < n; ++i) {
dist += __builtin_popcount(static_cast<uint32_t>(x[i]) ^
static_cast<uint32_t>(y[i]));
}
return dist;
}
功能:返回 x 和 y 之间的海明距离。(两个等长字符串之间的海明距离是两个字符串对应位置的不同字符的个数。)
15. caffe_cpu_asum 函数:
template <>
float caffe_cpu_asum<float>(const int n, const float* x) {
return cblas_sasum(n, x, );
}
功能:计算 vector x 的所有element的绝对值之和。
16.caffe_cpu_scale 函数:
template <>
void caffe_cpu_scale<float>(const int n, const float alpha, const float *x,
float* y) {
cblas_scopy(n, x, , y, );
cblas_sscal(n, alpha, y, );
}
功能:y = alpha*x
Caffe 使用记录(五):math_functions 分析的更多相关文章
- 20160512关于mac安装caffe的记录
记得2015年在mac系统上安装过一次caffe,非常顺利,但是最近群里许多同学反映mac安装caffe出现了各种问题,同时我也在帮助别人安装caffe的时候也遇到了一些坑,不再像以前这么顺利了.估计 ...
- Caffe源码中math_functions文件分析
Caffe源码(caffe version:09868ac , date: 2015.08.15)中有一些重要文件,这里介绍下math_functions文件. 1. include文件: ...
- LoadRunner11学习记录五 -- 错误提示分析
LoadRunner测试结果具体分析: 一.错误提示分析 分析实例: 1.Error: Failed to connect to server “172.17.7.230″: [10060] Con ...
- EntityFramework的多种记录日志方式,记录错误并分析执行时间过长原因(系列4)
前言 Entity Framework 延伸系列目录 今天我们来聊聊EF的日志记录. 一个好的数据库操作记录不仅仅可以帮你记录用户的操作, 更应该可以帮助你获得效率低下的语句来帮你提高运行效率 废话不 ...
- 自媒体时代网络脱口秀节目的“五W”分析——以《罗辑思维》为例
摘 要:随着互联网的发展,网络媒介生态的变化正在悄然进行.一大批网络自媒体节目<罗辑思维><晓说><凯子曰>等进入大众视线,成为大众关注的新焦点,其中<罗辑思 ...
- Lucene.net(4.8.0) 学习问题记录五: JIEba分词和Lucene的结合,以及对分词器的思考
前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...
- 基于Cesium三维地图项目记录_通视分析功能的实现
实现了剖面分析功能之后,下面来看看如何实现通视分析,还是基本按照之前的思路实现: 了解软件LocaScape是怎么实现的: 网址如下:http://www.locaspace.cn/V3.0/help ...
- leveldb 学习记录(五)SSTable格式介绍
本节主要记录SSTable的结构 为下一步代码阅读打好基础,考虑到已经有大量优秀博客解析透彻 就不再编写了 这里推荐 https://blog.csdn.net/tankles/article/det ...
- [转]EntityFramework的多种记录日志方式,记录错误并分析执行时间过长原因(系列4)
本文转自:https://www.cnblogs.com/GuZhenYin/p/5556732.html Entity Framework 延伸系列目录 今天我们来聊聊EF的日志记录. 一个好的数据 ...
随机推荐
- chart.js应用中遇到的问题
问题一:chart.js的版本问题:打开官网https://github.com/chartjs/Chart.js/releases/tag/v2.7.3,点击Tags,选择最新版本,我这里选用的是V ...
- 整合Spring框架和MyBatis框架
------------------------siwuxie095 整合 Spring 框架和 MyBatis 框架 ...
- 【读书笔记】深入应用C++11代码优化与工业级应用 读书笔记01
第一章 使用C++11让程序更简洁.更现代 1.1 类型推导 1.1.1 auto类型推导 1.auto关键字的新意义 不同于python等动态类型语言的运行时进行变量类型的推导,隐式类型定义的类 ...
- hbase总结~hbase配置和使用
Base配置和使用文档......................................................................................... ...
- Java并发集合(一)-CopyOnWriteArrayList分析与使用
CopyOnWriteArrayList分析与使用 原文链接: http://ifeve.com/java-copy-on-write/ 一.Copy-On-Write Copy-On-Write简称 ...
- ABP 异常处理 第四篇
1.ABP异常处理机制是通过过滤器实现的,我们查看的webAPI的异常处理,我们来看看他的源码,AbpApiExceptionFilterAttribute 继承ExceptionFilterAttr ...
- 一不注意,在Unity3D中DllImport 引起的Bug.
单要说这个Bug是很简单,但是得从头说起. 一些大型的网络游戏,或者加载比较多的一些场景时,如果要等待所有模型,贴图等各种资源文件加载完毕才能执行游戏,对用户将会是一个很头大的事情.所以就需要用到动态 ...
- Zookeeper Client基础操作和Java调用
## Zookeeper > Zookeeper目前用来做数据同步,再各个服务之前同步关键信息 i.客户端操作 1. 创建 create [-s] [-e] path data acl -s 为 ...
- Unity AssetBundle打包资源工具
using UnityEngine;using System.Collections;using UnityEditor; /// <summary>/// 简单资源打包Editor/// ...
- VM下载安装
VM下载 VM是一款收费软件,要找有密钥的下载. 我的网盘 > 软件 > 常用电脑工具 > VM VM安装 参考链接中的安装步骤 http://blog.java1234.com/b ...