[Solution] JZOJ3470 最短路

题面

Description

给定一个n个点m条边的有向图,有k个标记点,要求从规定的起点按任意顺序经过所有标记点到达规定的终点,问最短的距离是多少。

Input

第一行5个整数n、m、k、s、t,表示点个数、边条数、标记点个数、起点编号、终点编号。

接下来m行每行3个整数x、y、z,表示有一条从x到y的长为z的有向边。

接下来k行每行一个整数表示标记点编号。

Output

输出一个整数,表示最短距离,若没有方案可行输出-1。

Sample Input

3 3 2 1 1

1 2 1

2 3 1

3 1 1

2

3

Sample Output

3

【样例解释】

路径为1->2->3->1。

Data Constraint

20%的数据n<=10。

50%的数据n<=1000。

另有20%的数据k=0。

100%的数据n<=50000,m<=100000,0<=k<=10,1<=z<=5000。




分割线




解题思路

这个题很显然是一个最短路的问题,主要分为一下步骤

Step1:预处理出起点终点和k个关键点之间的最短路

Step2:因为看到了0<=k<=10所以可以暴力搜路过点顺序的全排列

Step3:不要忘记剪枝

复杂度O(knlogn+k!)

具体见Code


Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<vector>
#define maxn 50006
#define inf 0x3f3f3f3f3f3f3f3f
#define ll long long
using namespace std;
ll dis[maxn];
ll book[maxn];
ll f[15][15];
ll n,m,k,p,q;
struct Edge{
ll t,w,nxt;
}edge[maxn*2];
ll head[maxn],tot=0;
ll kk[20];
ll ans=inf,num=0;
priority_queue< pair<ll,ll> > hep;
ll gmin(ll a,ll b){return a<b?a:b;}
void add(ll st,ll to,ll we){edge[tot].t=to;edge[tot].w=we;edge[tot].nxt=head[st];head[st]=tot;tot++;}
void init(){
memset(head,-1,sizeof(head));
scanf("%lld %lld %lld %lld %lld",&n,&m,&k,&p,&q);
for(ll i=1;i<=m;i++){
ll a,b,c;scanf("%lld %lld %lld",&a,&b,&c);
add(a,b,c);
if(b==q)
add(a,n+1,c);
}
for(ll i=1;i<=k;i++)
scanf("%lld",kk+i);
kk[0]=p;kk[k+1]=n+1;
return;
}
void dij(ll s){
ll ss=s;
s=kk[s];
memset(dis,0x3f,sizeof(dis));
memset(book,0,sizeof(book));
while(!hep.empty()) hep.pop();
dis[s]=0;
hep.push(make_pair(0-dis[s],s));
while(!hep.empty()){
ll ns=hep.top().second;
hep.pop();
if(book[ns]) continue;
book[ns]=1;
for(ll i=head[ns];i!=-1;i=edge[i].nxt){
ll t=edge[i].t;
if(dis[t]>dis[ns]+edge[i].w){
dis[t]=dis[ns]+edge[i].w;
hep.push(make_pair(0-dis[t],t));
}
}
}
for(ll i=0;i<=k+1;i++)
f[ss][i]=dis[kk[i]];
return;
}
void dfs(ll dep,ll st){
if(num>=ans) return;
if(dep==k){
if(f[st][k+1]!=inf){
num+=f[st][k+1];
ans=gmin(ans,num);
num-=f[st][k+1];
}return;
}
for(ll i=1;i<=k;i++) if(!book[i])
if(f[st][i]!=inf){
book[i]=1;
num+=f[st][i];
dfs(dep+1,i);
num-=f[st][i];
book[i]=0;
}
}
void solve(){
for(ll i=0;i<=k;i++)
dij(i);
if(k==0)
if(f[0][1]!=inf){
printf("%lld\n",f[0][1]);return;
}
else{
printf("-1\n");return;
}
memset(book,0,sizeof(book));
for(ll i=1;i<=k;i++)if(f[0][i]!=inf){
memset(book,0,sizeof(book));
num+=f[0][i];
book[i]=1;
dfs(1,i);
book[i]=0;
num-=f[0][i];
}
if(ans==inf)
printf("-1\n");
else
printf("%lld\n",ans);
return;
}
int main(){
init();
solve();
return 0;
}

[Solution] JZOJ3470 最短路的更多相关文章

  1. P1266 速度限制 (最短路,图论)

    题目链接 Solution 在最短路转移的时候在队列或者堆中记录状态为 \(f[u][v]\) 代表上一个节点为 \(u\) ,速度为 \(v\) . 然后按部就班转移即可... Code #incl ...

  2. [SinGuLaRiTy] 复习模板-图论

    [SinGuLaRiTy-1041] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. 计算树的直径 //方法:任选一个点作为起点进行一次BFS ...

  3. [AtCoder arc090E]Avoiding Collision

    Description 题库链接 给出一张 \(N\) 个节点, \(M\) 条边的无向图,给出起点 \(S\) 和终点 \(T\) .询问两个人分别从 \(S\) 和 \(T\) 出发,走最短路不相 ...

  4. DP&图论 DAY 5 上午

    DP&图论  DAY 5  上午 POJ 1125 Stockbroker Grapevine 有 N 个股票经济人可以互相传递消息,他们之间存在一些单向的通信路径.现在有一个消息要由某个人开 ...

  5. [bzoj3694]最短路

    Description 给出一个$n$个点$m$条边的无向图,$n$个点的编号从$1-n$,定义源点为$1$. 定义最短路树如下:从源点$1$经过边集$T$到任意一点$i$有且仅有一条路径,且这条路径 ...

  6. 【BZOJ-4456】旅行者 分治 + 最短路

    4456: [Zjoi2016]旅行者 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 254  Solved: 162[Submit][Status] ...

  7. 【BZOJ-4289】Tax 最短路 + 技巧建图

    4289: PA2012 Tax Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 168  Solved: 69[Submit][Status][Dis ...

  8. 【BZOJ-2007】海拔 最小割 (平面图转对偶图 + 最短路)

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2095  Solved: 1002[Submit][Status] ...

  9. 【BZOJ-3931】网络吞吐量 最短路 + 最大流

    3931: [CQOI2015]网络吞吐量 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1228  Solved: 524[Submit][Stat ...

随机推荐

  1. Go的CSP并发模型实现:M, P, G

    最近抽空研究.整理了一下Golang调度机制,学习了其他大牛的文章.把自己的理解写下来.如有错误,请指正!!! golang的goroutine机制有点像线程池:        一.go 内部有三个对 ...

  2. 用Jedis调用Lua脚本来完成redis的数据操作

    1.先完成一个简单的set/get操作 package com.example.HnadleTaskQueue; import redis.clients.jedis.Jedis; import ja ...

  3. 关于element-ui日期选择器disabledDate使用心得

    实现目的: 使用type="data"类型实现具备开始日期与结束日期组件(ps:element有自带的type="daterange"类型的组件可以实现此功能) ...

  4. [Oracle,2018-03-01] oracle常用函数

    最近经常用到一些oracle中的函数,今天就总结一些常用的: 一.单行函数 只处理单个行,并且为每行返回一个结果. 1.字符函数 (1)concat(str1,str2)字符串拼接函数 select ...

  5. maven的安装和配置

    这篇文章主要是对maven安装说明,以便后续翻阅,本人刚接触,请多见谅! 1.maven官网下载:http://maven.apache.org/download.cgi 2.解压到你想要放的路径里, ...

  6. SpringBoot中常用注解@Controller/@RestController/@RequestMapping的区别

    @Controller 处理http请求 @Controller //@ResponseBody public class HelloController { @RequestMapping(valu ...

  7. background url base64

    各自含义:data: ----获取数据类型名称image/gif; -----指数据类型名称base64 -----指编码模式AAAAA ------指编码以后的结果. background-imag ...

  8. SQLLDR导入乱码问题的解决

    SQLLDR导入乱码问题的解决   处理过程: 1.本地建立控制文件   load data infile 'd:\TMP_KAITOUSHUJU.csv' into table TMP_KAITOU ...

  9. 十六、Mediator 仲载者设计模式

    原理: 代码清单: Mediator public interface Mediator { void createColleagues(); void colleagueChanged(); } C ...

  10. 你不知道的JavaScript中,读书笔记

    七种内置类型 null, undefined, boolean, number, string, object, symbol typeof null === 'object' // true nul ...