传送门

分析

次小生成树的求法有两种,最大众的一种是通过倍增LCA找环中最大边求解,而这里我介绍一种神奇的O(nlogn) 做法:

我们先建立最小生成树,因为我们用kruskal求解是边的大小已经按升序排列,所以相同情况下,先枚举的边一定更优,所以我们每一次暴力的找非树边所连两点的LCA,并在寻找过程中对经过的边染色同时将其加入并查集以防止其二次查询(为何只需查找一次之前已经说过),然后在最后,我们只需找出所染颜色所代表的边的权值减去被染色的边的权值的最小值即可。因为被染色的树边共有n-1条,所以此过程的复杂度是O(m),因此总复杂度即为快排复杂度O(mlogm)。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
#include<ctime>
#include<cctype>
using namespace std;
long long fa[110000],tot,used[310000],f[110000],col[310000],dep[110000];
long long ari[110000],is[110000];
long long sum=1;
struct node{
    long long x,y,z;
}d[310000];
struct edge{
    long long from,to,nxt,w,id;
}e[610000];
long long head[610000];
void add(long long x,long long y,long long z,long long id){
    e[sum].to=y;
    e[sum].nxt=head[x];
    e[sum].w=z;
    e[sum].id=id;
    head[x]=sum++;
    e[sum].to=x;
    e[sum].nxt=head[y];
    e[sum].w=z;
    e[sum].id=id;
    head[y]=sum++;
    return;
}
bool cmp(const node &p,const node &q){
    return p.z<q.z;
}
long long sf(long long a){
    return fa[a]==a?a:fa[a]=sf(fa[a]);
}
void dfs(long long a,long long fat){
    long long i,j,k;
    for(i=head[a];i;i=e[i].nxt)
       if(e[i].to!=fat){
        dep[e[i].to]=dep[a]+1;
        f[e[i].to]=a;
        ari[e[i].to]=e[i].id;
        dfs(e[i].to,a);
    }
    return;
}
long long ff(long long a){
    return is[a]==a?a:is[a]=ff(is[a]);
}
void mer(long long u,long long v,long long c){
    u=ff(u),v=ff(v);
    while(u!=v){
        if(dep[u]<dep[v])swap(u,v);
        col[ari[u]]=c;
        is[u]=ff(f[u]);
        u=ff(u);
    }
    return;
}
int main(){
    //freopen("1.in","r",stdin);
    long long n,m,i,j,k;
    scanf("%lld%lld",&n,&m);
    for(i=1;i<=m;i++){
       scanf("%lld%lld%lld",&d[i].x,&d[i].y,&d[i].z);
    }
    //建最小生成树
    sort(d+1,d+m+1,cmp);
    long long cnt=0,p,q;
    for(i=1;i<=n;i++){
       fa[i]=i;
       f[i]=i;
       is[i]=i;
    }
    for(i=1;i<=m;i++){
        p=sf(d[i].x),q=sf(d[i].y);
        if(p!=q){
            cnt++;
            if(rand()%2)fa[p]=q;
              else fa[q]=p;        
            tot+=d[i].z;
            used[i]=1;
            add(d[i].x,d[i].y,d[i].z,i);
        }
        if(cnt==n-1)break;
    }
    //初始化,f表示父子关系,is用于新并查集
    dfs(1,0);
    for(i=1;i<=m;i++)
       if(!used[i]){
            mer(d[i].x,d[i].y,i);
       }
    //求答案
    long long ans=1000000007;
    for(i=1;i<=m;i++)
       if(used[i]){
            if(col[i]&&d[col[i]].z!=d[i].z)
              ans=min(ans,d[col[i]].z-d[i].z);
       }
    printf("%lld\n",ans+tot);
    return 0;
}

p4180 次小生成树的更多相关文章

  1. P4180 【模板】严格次小生成树[BJWC2010]

    P4180 [模板]严格次小生成树[BJWC2010] 倍增(LCA)+最小生成树 施工队挖断学校光缆导致断网1天(大雾) 考虑直接枚举不在最小生成树上的边.但是边权可能与最小生成树上的边相等,这样删 ...

  2. 【luogu P4180 严格次小生成树[BJWC2010]】 模板

    题目链接:https://www.luogu.org/problemnew/show/P4180 这个题卡树剖.记得开O2. 这个题inf要到1e18. 定理:次小生成树和最小生成树差距只有在一条边上 ...

  3. 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)

    洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...

  4. Luogu P4180 【模板】严格次小生成树[BJWC2010]

    P4180 [模板]严格次小生成树[BJWC2010] 题意 题目描述 小\(C\)最近学了很多最小生成树的算法,\(Prim\)算法.\(Kurskal\)算法.消圈算法等等.正当小\(C\)洋洋得 ...

  5. 洛谷P4180【Beijing2010组队】次小生成树Tree

    题目描述: 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还 ...

  6. P4180 [BJWC2010]严格次小生成树

    P4180 [BJWC2010]严格次小生成树 P4180 题意 求出一个无向联通图的严格次小生成树.严格次小生成树的定义为边权和大于最小生成树的边权和但不存在另一棵生成树的边权和在最小生成树和严格次 ...

  7. 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)

    洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...

  8. P4180 严格次小生成树[BJWC2010] Kruskal,倍增

    题目链接\(Click\) \(Here\). 题意就是要求一个图的严格次小生成树.以前被题面吓到了没敢做,写了一下发现并不难. 既然要考虑次小我们就先考虑最小.可以感性理解到一定有一种次小生成树,可 ...

  9. [Luogu P4180][BJWC 2010]严格次小生成树

    严格次小生成树,关键是“严格”,如果是不严格的其实只需要枚举每条不在最小生成树的边,如果得到边权和大于等于最小生成树的结束就行.原理就是因为Kruskal非常贪心,只要随便改一条边就能得到一个非严格的 ...

随机推荐

  1. P3768 【简单的数学题】

    P3768 [简单的数学题] \(Ans=\sum ^{n}_{i=1}\sum ^{n}_{j=1}ijgcd(i,j)\) \(=\sum ^{n}_{i=1}\sum ^{n}_{j=1}ij\ ...

  2. 次小生成树 POJ 2728

    #include <cstdio>#include <cstring>#include <iostream>#include <algorithm>us ...

  3. LINQ 学习路程 -- 查询操作 Quantifier Operators All Any Contain

    Operator Description All 判断所有的元素是否满足条件 Any 判断存在一个元素满足条件 Contain 判断是否包含元素 IList<Student> studen ...

  4. MFC使用简单总结(便于以后查阅)

    一.资源 共有三个和资源有关的文件:资源头文件resource.h.资源描述文件resource.rc和存放在res文件夹下的具体的资源如图片等. 资源头文件中全部是宏定义,应用程序需要为每个资源都定 ...

  5. python第六篇:Python复制超大文件、复制二进制文件

    Python文件复制 # 写程序实现复制文件的功能 # 要求: # 1. 源文件路径和目标文件路径需要手动输入 # 2. 要考虑文件关闭的问题 # 3. 要考虑复制超大文件的问题 # 4. 要能复制二 ...

  6. 分享知识-快乐自己:mongodb 安装部署(linux)

    1):下载 mongodb 包 [root@admin tools]# wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.0.6. ...

  7. Java之泛型深解

    泛型的内容确实很多,在上一篇Java之泛型浅解讲到了一些常用的泛型,但是还远远不够,上一篇的内容比较容易理解,这一篇我自己觉得更加难理解一些,因此,我还得想办法让它更加接地气更加容易理解,方便我和源宝 ...

  8. Centos7部署NFS

    server1:192.168.1.189   ###客户端 server2:192.168.1.190    ##服务端 1.首先创建共享目录. mkdir -p /data/share 安装nfs ...

  9. codeforces 652A A. Gabriel and Caterpillar(水题)

    题目链接: A. Gabriel and Caterpillar time limit per test 1 second memory limit per test 256 megabytes in ...

  10. ACM学习历程—FZU2195 检查站点(树形DP || 贪心)

    Description 在山上一共有N个站点需要检查,检查员从山顶出发去各个站点进行检查,各个站点间有且仅有一条通路,检查员下山前往站点时比较轻松,而上山时却需要额外的时间,问最后检查员检查完所有站点 ...