p4180 次小生成树
分析:
次小生成树的求法有两种,最大众的一种是通过倍增LCA找环中最大边求解,而这里我介绍一种神奇的O(nlogn) 做法:
我们先建立最小生成树,因为我们用kruskal求解是边的大小已经按升序排列,所以相同情况下,先枚举的边一定更优,所以我们每一次暴力的找非树边所连两点的LCA,并在寻找过程中对经过的边染色同时将其加入并查集以防止其二次查询(为何只需查找一次之前已经说过),然后在最后,我们只需找出所染颜色所代表的边的权值减去被染色的边的权值的最小值即可。因为被染色的树边共有n-1条,所以此过程的复杂度是O(m),因此总复杂度即为快排复杂度O(mlogm)。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
#include<ctime>
#include<cctype>
using namespace std;
long long fa[110000],tot,used[310000],f[110000],col[310000],dep[110000];
long long ari[110000],is[110000];
long long sum=1;
struct node{
long long x,y,z;
}d[310000];
struct edge{
long long from,to,nxt,w,id;
}e[610000];
long long head[610000];
void add(long long x,long long y,long long z,long long id){
e[sum].to=y;
e[sum].nxt=head[x];
e[sum].w=z;
e[sum].id=id;
head[x]=sum++;
e[sum].to=x;
e[sum].nxt=head[y];
e[sum].w=z;
e[sum].id=id;
head[y]=sum++;
return;
}
bool cmp(const node &p,const node &q){
return p.z<q.z;
}
long long sf(long long a){
return fa[a]==a?a:fa[a]=sf(fa[a]);
}
void dfs(long long a,long long fat){
long long i,j,k;
for(i=head[a];i;i=e[i].nxt)
if(e[i].to!=fat){
dep[e[i].to]=dep[a]+1;
f[e[i].to]=a;
ari[e[i].to]=e[i].id;
dfs(e[i].to,a);
}
return;
}
long long ff(long long a){
return is[a]==a?a:is[a]=ff(is[a]);
}
void mer(long long u,long long v,long long c){
u=ff(u),v=ff(v);
while(u!=v){
if(dep[u]<dep[v])swap(u,v);
col[ari[u]]=c;
is[u]=ff(f[u]);
u=ff(u);
}
return;
}
int main(){
//freopen("1.in","r",stdin);
long long n,m,i,j,k;
scanf("%lld%lld",&n,&m);
for(i=1;i<=m;i++){
scanf("%lld%lld%lld",&d[i].x,&d[i].y,&d[i].z);
}
//建最小生成树
sort(d+1,d+m+1,cmp);
long long cnt=0,p,q;
for(i=1;i<=n;i++){
fa[i]=i;
f[i]=i;
is[i]=i;
}
for(i=1;i<=m;i++){
p=sf(d[i].x),q=sf(d[i].y);
if(p!=q){
cnt++;
if(rand()%2)fa[p]=q;
else fa[q]=p;
tot+=d[i].z;
used[i]=1;
add(d[i].x,d[i].y,d[i].z,i);
}
if(cnt==n-1)break;
}
//初始化,f表示父子关系,is用于新并查集
dfs(1,0);
for(i=1;i<=m;i++)
if(!used[i]){
mer(d[i].x,d[i].y,i);
}
//求答案
long long ans=1000000007;
for(i=1;i<=m;i++)
if(used[i]){
if(col[i]&&d[col[i]].z!=d[i].z)
ans=min(ans,d[col[i]].z-d[i].z);
}
printf("%lld\n",ans+tot);
return 0;
}
p4180 次小生成树的更多相关文章
- P4180 【模板】严格次小生成树[BJWC2010]
P4180 [模板]严格次小生成树[BJWC2010] 倍增(LCA)+最小生成树 施工队挖断学校光缆导致断网1天(大雾) 考虑直接枚举不在最小生成树上的边.但是边权可能与最小生成树上的边相等,这样删 ...
- 【luogu P4180 严格次小生成树[BJWC2010]】 模板
题目链接:https://www.luogu.org/problemnew/show/P4180 这个题卡树剖.记得开O2. 这个题inf要到1e18. 定理:次小生成树和最小生成树差距只有在一条边上 ...
- 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)
洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...
- Luogu P4180 【模板】严格次小生成树[BJWC2010]
P4180 [模板]严格次小生成树[BJWC2010] 题意 题目描述 小\(C\)最近学了很多最小生成树的算法,\(Prim\)算法.\(Kurskal\)算法.消圈算法等等.正当小\(C\)洋洋得 ...
- 洛谷P4180【Beijing2010组队】次小生成树Tree
题目描述: 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还 ...
- P4180 [BJWC2010]严格次小生成树
P4180 [BJWC2010]严格次小生成树 P4180 题意 求出一个无向联通图的严格次小生成树.严格次小生成树的定义为边权和大于最小生成树的边权和但不存在另一棵生成树的边权和在最小生成树和严格次 ...
- 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...
- P4180 严格次小生成树[BJWC2010] Kruskal,倍增
题目链接\(Click\) \(Here\). 题意就是要求一个图的严格次小生成树.以前被题面吓到了没敢做,写了一下发现并不难. 既然要考虑次小我们就先考虑最小.可以感性理解到一定有一种次小生成树,可 ...
- [Luogu P4180][BJWC 2010]严格次小生成树
严格次小生成树,关键是“严格”,如果是不严格的其实只需要枚举每条不在最小生成树的边,如果得到边权和大于等于最小生成树的结束就行.原理就是因为Kruskal非常贪心,只要随便改一条边就能得到一个非严格的 ...
随机推荐
- 第五章 python中的异常处理
每种编程语言都会有自己的异常处理机制,虽然各有特色,但基本上都差不多,那么python中强大异常处理机制是什么样的呢? 一.异常: python用异常对象来表示异常情况,遇到错误后,会引发异常.如果异 ...
- 2014年互联网IT待遇
1. 13k*14~16k*145.美团 13k*15~16k*15,也有更高的.6.去哪儿 11k*16~15k*167.人人技术类(12K-14K)*14 (2014)8.58同城 20w+9.网 ...
- screen&tmux快捷键
screen Key 快捷键 Action 动作 Notes 备注 Ctrl+a c new window 新窗口 Ctrl+a n next window 下一个窗口 I bind F12 to ...
- eclipse中集成velocity插件
1.打开eclipse,点击help,选择install new software 2.点击add,输入下载地址: http://download.eclipse.org/eclipse/update ...
- ThinkPad.E440_安装固态硬盘
1.ThinkPad(E440) 加装SSD固态硬盘,并改装双硬盘_百度经验.html(https://jingyan.baidu.com/article/9f63fb91856ec7c8400f0e ...
- Cannot find class [org.apache.commons.dbcp.BasicDataSource] for bean with name 'dataSource' defined in class path resource [applicationContext.xml]
Cannot find class [org.apache.commons.dbcp.BasicDataSource] for bean with name 'dataSource' defined ...
- js 处理移动端触摸事件
在处理移动端的touch事件时,我们可以选择一些插件来处理,比如jquery ui touch punch.js 提供丰富的触摸效果,可以满足移动端的开发, 但是,有些移动端开发中,并不需要如此复杂的 ...
- Echarts 地图(map)插件之 省份的颜色自定义
ECharts,缩写来自Enterprise Charts,商业级数据图表,一个纯Javascript的图表库,可以流畅的运行在PC和移动设备上,兼容当前绝大部分浏览器(IE6/7/8/9/10/11 ...
- POJ 2253 Frogger(warshall算法)
题意:湖中有很多石头,两只青蛙分别位于两块石头上.其中一只青蛙要经过一系列的跳跃,先跳到其他石头上,最后跳到另一只青蛙那里.目的是求出所有路径中最大变长的最小值(就是在到达目的地的路径中,找出青蛙需要 ...
- 原生js图片懒加载特效
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...