BZOJ 2669- [cqoi2012]局部极小值
不错的题啊 挺好的结合了容斥和状压DP
保证每个数各不相同,又有大小关系,那么就可以将数字从小到大填。
不难发现 局部极小值<=8,这个可以状压,f[i][j] 表示填了前i个数,局部极小值被填的状态是j的方案数。
转移时预处理数组p[j]表示当局部极小值的填写状态为j时有哪些位置可以填数。
枚举当前数是否填在局部极小值的位置上。
f[i][j]=f[i-1][j]*(p[j]-i+1)+f[i-1][k]
然后 会有不是局部最小值的点成为局部最小值的情况 我们就用容斥来减掉这些情况
用dfs来枚举那些点成为了局部最小值 然后状压DP就好 不难发现 dfs的方案数其实是挺少的
#include<bits/stdc++.h>
#define me(a,x) memset(a,x,sizeof a)
using namespace std;
const int mod=12345678;
const int dx[9]={0,0,1,1,1,-1,-1,-1,0};
const int dy[9]={1,-1,1,-1,0,1,-1,0,0};
inline int read(){
char ch=getchar(); int x=0,f=1;
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0'; ch=getchar();}
return x*f;
}
char s[6][9]; int n,m,f[30][1<<8],ans,p[1<<8];
struct P{int x,y;}a[10];
int dp()
{
me(f,0); me(p,0); int tp=0,i,j,k,t;
for(i=1;i<=n;i++)for(j=1;j<=m;j++)
if(s[i][j]=='X')a[++tp]=(P){i,j};
for(t=0;t<(1<<tp);t++){
bool v[6][9]; me(v,0);
for(i=1;i<=tp;i++)
if(~t&(1<<i-1)) v[a[i].x][a[i].y]=1;
for(i=1;i<=n;i++)for(j=1;j<=m;j++){
for(k=0;k<9;k++)
if(v[i+dx[k]][j+dy[k]])break;
if(k>8)p[t]++;
}
}
f[0][0]=1;
for(i=1;i<=n*m;i++)for(t=0;t<(1<<tp);t++)
{
(f[i][t]+=(long long)f[i-1][t]*max(p[t]-i+1,0)%mod)%=mod;
for(j=1;j<=tp;j++)
if(t&(1<<j-1))(f[i][t]+=f[i-1][t^(1<<j-1)])%=mod;
}
return f[n*m][(1<<tp)-1];
}
void dfs(int x,int y,int cnt){
if(y==m+1){dfs(x+1,1,cnt); return;}
if(x==n+1){
(ans+=dp()*(cnt&1?-1:1))%=mod;
return;
}
dfs(x,y+1,cnt); int k;
for(k=0;k<9;k++)if(s[dx[k]+x][dy[k]+y]=='X')break;
if(k>8){s[x][y]='X'; dfs(x,y+1,cnt+1); s[x][y]='.';}
}
int main()
{
n=read(),m=read(); int i,j,k;
for(i=1;i<=n;i++)scanf("%s",s[i]+1);
for(i=1;i<=n;i++)for(j=1;j<=m;j++)if(s[i][j]=='X')
for(k=0;k<8;k++)
if(s[dx[k]+i][dy[k]+j]=='X')
return puts("0"),0;
dfs(1,1,0);
printf("%d\n",(ans+mod)%mod);
return 0;
}
BZOJ 2669- [cqoi2012]局部极小值的更多相关文章
- bzoj 2669 [cqoi2012]局部极小值 DP+容斥
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 838 Solved: 444[Submit][Status ...
- BZOJ 2669 CQOI2012 局部极小值 状压dp+容斥原理
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2669 题意概述:实际上原题意很简洁了我就不写了吧.... 二话不说先观察一下性质,首先棋盘 ...
- ●BZOJ 2669 [cqoi2012]局部极小值
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2669 题解: 容斥,DP,DFS 先看看 dp 部分:首先呢,X的个数不会超过 8个.个数很 ...
- 【BZOJ 2669】 2669: [cqoi2012]局部极小值 (状压DP+容斥原理)
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 667 Solved: 350 Description 有一 ...
- bzoj2669[cqoi2012]局部极小值 容斥+状压dp
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 774 Solved: 411[Submit][Status ...
- [BZOJ2669] [cqoi2012]局部极小值
[BZOJ2669] [cqoi2012]局部极小值 Description 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点) ...
- P3160 [CQOI2012]局部极小值
题目 P3160 [CQOI2012]局部极小值 一眼就是状压,接下来就不知道了\(qwq\) 做法 我们能手玩出局部小值最多差不多是\(8,9\)个的样子,\(dp_{i,j}\)为填满\(1~i\ ...
- P3160 [CQOI2012]局部极小值 题解(状压DP+容斥)
题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示 ...
- BZOJ 2669 Luogu P3160 [CQOI2012]局部极小值 (容斥原理、DP)
题目链接 (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=2669 (luogu) https://www.luogu.org/prob ...
- BZOJ 2669 【CQOI2012】 局部极小值
题目链接:局部极小值 这是一道\(dp\)好题. 由于需要保证某些位置比周围都要小,那么我们可以从小到大把每个数依次填入,保证每个局部极小值填入之前周围都不能填,就只需要在加入的时候计数了. 由于局部 ...
随机推荐
- JFinal Template Engine 使用
官方文档:JFinal Template Engine 文档
- 解决使用Oracle数据库,项目启动由于表原因无法成功启动问题
1.仔细看异常信息,如果出现一个 翻译过来是 不仅仅这一张表,那就说明,在连接数据库,定位到表的时候有多张表,不知道连哪一张. 原因: 有多个用户,这两个用户下有相同的表. 就算是在不同的表空间也不 ...
- linux误删除恢复
extundelete 大家基本都知道,在linux上误删除了东西后果是很严重的,尤其是在服务器上误删除了东西,对于字符终端,想要实现恢复删除的数据更是难上加难,对于Linux误删除了重要的东西,虽然 ...
- hdu 1574 RP问题 01背包的变形
hdu 1574 RP问题 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1574 分析:01背包的变形. RP可能为负,所以这里分两种情况处理一下就好 ...
- shell sort 排序大讨论
转自http://roclinux.cn 本原创文章属于<Linux大棚>博客,博客地址为http://roclinux.cn.文章作者为rocrocket. === [正文开始]有时候学 ...
- 利用traceback精确定位错误发生的位置
背景:在线上代码发生bug时经常只知道错误的原因,但是很难快速的定位到错误发生的位置. 如下图,我们只知道错误. 而在try...except...后添加traceback即可以明确的抛出错误的地址. ...
- 整合S2SH框架
S2SH框架(Struts2,Spring,Hibernate)整合 Struts2.Hibernate和Spring.其中在Struts2部分主要为MVC设计思想,Struts2的处理流程及配置,S ...
- PHP的几种遍历方法
PHP常用的遍历方法有三种,foreach,for,list()/each()和while,这三种方法中效率最高的是使用foreach语句遍历数组 一.使用for语句循环遍历数组 值得大家注意的是使用 ...
- NIO--1
1.为什么不直接用jdk NIO(1) API繁杂(2) 原始NIO可靠性不是很高.可靠性包括:断开重连,网络闪断,半包读写,失败缓存(3) NIO 的epoll BUG会导致多路复用器Selecto ...
- Redis键管理
Redis键管理 Redis 键命令用于管理 redis 的键. 语法 Redis 键命令的基本语法如下: redis > COMMAND KEY_NAME redis > SET w3c ...