【BZOJ2790】[Poi2012]Distance

Description

对于两个正整数a、b,这样定义函数d(a,b):每次操作可以选择一个质数p,将a变成a*p或a/p,

如果选择变成a/p就要保证p是a的约数,d(a,b)表示将a变成b所需的最少操作次数。例如d(69,42)=3。

现在给出n个正整数A1,A2,...,An,对于每个i (1<=i<=n),求最小的j(1<=j<=n)使得i≠j且d(Ai,Aj)最小。

Input

第一行一个正整数n (2<=n<=100,000)。第二行n个正整数A1,A2,...,An (Ai<=1,000,000)。

Output

输出n行,依次表示答案。

Sample Input

6
1
2
3
4
5
6

Sample Output

2
1
1
2
1
2

题解:我们设s[i]表示i的所有质因子的幂次之和,那么从i变为1的代价就是s[i],从i变为j的代价就是s[i]+s[j]-s[gcd(i,j)],然后怎么做呢?

此时最重要的一个思路就是讨论gcd(i,j)对它的倍数的贡献(与和式的改变求和指标类似)

我们枚举i的每个倍数,找出最小的j使得s[j]最小且j在原数列中出现过且出现过的位置最靠前,这样我们就能用j去更新i的其他倍数,但是j用谁来更新呢?于是我们还需要找出一个次大值k,用它来更新j。

此外别忘了判重。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=100010;
const int maxm=1000010;
const int inf=0x3f3f3f3f;
int n,m,num,m1,m2;
int v[maxn],pri[maxn],s[maxm],f[maxm],g[maxm],mn[maxm],next[maxm];
bool np[maxm];
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd();
int i,j,k;
memset(f,0x3f,sizeof(f));
for(i=1;i<=n;i++)
v[i]=rd(),next[v[i]]=(mn[v[i]]&&!next[v[i]])?i:next[v[i]],mn[v[i]]=(!mn[v[i]])?i:mn[v[i]],m=max(m,v[i]);
s[1]=0;
for(i=2;i<=m;i++)
{
if(!np[i]) pri[++num]=i,s[i]=1;
for(j=1;j<=num&&i*pri[j]<=m;j++)
{
np[i*pri[j]]=1,s[i*pri[j]]=s[i]+1;
if(i%pri[j]==0) break;
}
}
s[0]=mn[0]=inf;
for(i=1;i<=m;i++)
{
m1=m2=0;
for(j=i;j<=m;j+=i)
{
if(!mn[j]) continue;
if(s[m1]>s[j]||(s[m1]==s[j]&&mn[m1]>mn[j])) m2=m1,m1=j;
else if(s[m2]>s[j]||(s[m2]==s[j]&&mn[m2]>mn[j])) m2=j;
}
for(j=i;j<=m;j+=i)
{
k=(j==m1)?m2:m1;
if(f[j]>s[j]+s[k]-2*s[i]) f[j]=s[j]+s[k]-2*s[i],g[j]=mn[k];
else if(f[j]==s[j]+s[k]-2*s[i]&&g[j]>mn[k]) g[j]=min(g[j],mn[k]);
}
}
for(i=1;i<=n;i++)
{
if(mn[v[i]]==i) printf("%d\n",next[v[i]]?next[v[i]]:g[v[i]]);
else printf("%d\n",mn[v[i]]);
}
return 0;
}

【BZOJ2790】[Poi2012]Distance 筛素数+调和级数的更多相关文章

  1. [BZOJ2790][Poi2012]Distance

    2790: [Poi2012]Distance Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 225  Solved: 115[Submit][Sta ...

  2. POJ-2689 Prime Distance (两重筛素数,区间平移)

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13961   Accepted: 3725 D ...

  3. poj 2689 Prime Distance(大区间筛素数)

    http://poj.org/problem?id=2689 题意:给出一个大区间[L,U],分别求出该区间内连续的相差最小和相差最大的素数对. 由于L<U<=2147483647,直接筛 ...

  4. POJ2689-Prime Distance-区间筛素数

    最近改自己的错误代码改到要上天,心累. 这是迄今为止写的最心累的博客. Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  5. POJ 2689.Prime Distance-区间筛素数

    最近改自己的错误代码改到要上天,心累. 这是迄今为止写的最心累的博客. Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  6. 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数

    1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...

  7. CF449C Jzzhu and Apples (筛素数 数论?

    Codeforces Round #257 (Div. 1) C Codeforces Round #257 (Div. 1) E CF450E C. Jzzhu and Apples time li ...

  8. 洛谷P3383 【模板】线性筛素数

    P3383 [模板]线性筛素数 256通过 579提交 题目提供者HansBug 标签 难度普及- 提交  讨论  题解 最新讨论 Too many or Too few lines 样例解释有问题 ...

  9. poj3126 筛素数+bfs

    //Accepted 212 KB 16 ms //筛素数+bfs #include <cstdio> #include <cstring> #include <iost ...

随机推荐

  1. KodExplorer介绍

    KodExplorer介绍 KOD·简介 官方网站https://kodcloud.com/ KodExplorer可道云,原名芒果云,是一款基于 PHP 开发的开源 WEB 网页版轻量级私有云和在线 ...

  2. HTML5 Canvas 画钟表

    画钟表是2D画图的老生常谈,我也不能免俗弄了一个.代码如下: <!DOCTYPE html> <html lang="utf-8"> <meta ht ...

  3. HTML5 Canvas 龟羊赛跑

    从一张图上截取不同图块,动态显示在canvas上,形成赛跑的效果.完整代码图片下载请点击 https://files.cnblogs.com/files/xiandedanteng/turtleShe ...

  4. SRM 515 DIV1 550pt

    题目大意: n个人进入商店买东西,对于每个顾客都有T.C.P这3个数组,表示有Pj的概率第i个顾客在Tj的时间进入商店以Cj的价格买东西,每个顾客Pj的和小于等于1,保证每个时间只最多只有一个顾客可能 ...

  5. 关于其它模块的设计,有非常多须要自己去构建和完毕,在这里就简单地举几个样例来看看其它模块的设计。我们要做的就是有更改password模块,客户选择模块和关于本软件模块。更改password模块用来更改管理员的password,客户选择对话框模块用来选择已加入的客户,关于本软件模块用来说明客户管理系统的一些必要信息和制作人的信息。

            五,其它模块设计         关于其它模块的设计,有非常多须要自己去构建和完毕,在这里就简单地举几个样例来看看其它模块的设计. 我们要做的就是有更改password模块.客户选择模 ...

  6. C#操作消息列队

    首先安装消息队列MSMQ,在“计算机管理-服务和应用程序-消息队列-专用队列”中新建列队名称Demo: static void SendAndReceiveMsg() { MessageQueue m ...

  7. chrome浏览器提取网页视频

    http://blog.csdn.net/pipisorry/article/details/37728839 在我们平时上网看视频听音乐时都会产生缓存,可是我们非常难通过一些软件把当中的视频和音乐文 ...

  8. java精确除法计算,四舍五入 Java问题通用解决代码

    主要用java.math.BigDecimal工具类实现,想要了解BigDecimal类可以看java api   正式版:        public static Double divide() ...

  9. ios侧滑返回:完美解决 interactivePopGestureRecognizer 卡住的问题

    interactivePopGestureRecognizer是iOS7推出的解决VeiwController滑动后退的新功能,虽然很实用,但是坑也很多啊(比如在rootViewcontroller下 ...

  10. Android下的ActionBar

    1 http://blog.csdn.net/lilu_leo/article/details/7674904 2 http://blog.csdn.net/eclipsexys/article/de ...