Numpy:高性能计算和数学分析的基础包

  • ndarray, 一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组
  • 用于对数组数据进行快速运算的标准数学函数
  • 用于读写磁盘数据的工具和用于操作内存映射文件的工具
  • 线性代数,随机数生成,傅里叶变换
  • 用于集成C,C++,Fortran等语言编写的代码工具(很容易将数据传给低级语言编写的外部库,外部库也能以Numpy数组形式将数据返回给python,使得python成为包装c/c++/Fortran历史代码库选择)

ndarray: N维数组对象,快速而灵活的大数据容器集,通用同构数据容器。

data.shape: 一个各维度大小的元组

data.dtype: 说明数组数据类型的对象

如何创建:

array()函数

zeros(): 全零

ones(): 全一

empty(): 垃圾值

arrange(): python内置函数range的数组版

所有数据类型默认float64

astype()类型转换:

数组和标量之间的运算:

相同大小之间的组和数组,数组与标量之间的运算都会将运算用到元素级

不同大小数组之间的运算叫做广播(broadcasting)

基本索引和切片:

和列表最重要的区别在于, 数组的切片是原始数组的视图(数据不会复制,视图上任何修改都会反映到源数组上)

原因:Numpy设计的目的是处理大数据,所以假如Numpy坚持将数据复制来复制去会产生性能和内存的问题

显示复制:copy()方法

基本的索引和切片:

切片的时候区间同样是左开右闭:

布尔值索引:布尔数组的长度必须和被索引的轴长度一致

通过布尔索引选取数组中的数据,将总是创建数据的副本,即使返回一模一样的数组也是这样

python 中的 and 和 or 在布尔数组中无效

花式索引:利用整数数组进行索引

和切片不一样总是将数据复制到新的数组当中

数组转置和轴对换

transpose()方法和T属性

高维数组转置: swapaxes transpose方法

快速的元素级数组函数

一元函数

二元函数

利用数组进行数据处理

矢量化:用数组表达式代替循环,矢量化数组运算比等价的纯python方式快1-2个数量级(甚至更多)

将条件逻辑转换为数组运算

np.where()

数学和统计方法

用于布尔型数组的方法

any():测试数组中是否存在一个或者多个True

all(): 检查数组中所有值是否都是True

排序:

顶级方法np.sort()返回数组已排序副本

属性sort()修改数组本身

唯一化及其他的集合逻辑

np.unique()唯一化

np.in1d()测试数组中值在另一个数组中的成员资格

集合函数:

数组文件输入输出

np.save()/np.savez()

np.load()

线性代数

dot():既是数组方法也是numpy命名空间中的一个函数

numpy.linalg库中有一组标准矩阵分解运算以及求诸如逆和行列式之类的东西

随机数生成

[读书笔记] Python数据分析 (四) 数组和矢量计算的更多相关文章

  1. python numpy基础 数组和矢量计算

    在python 中有时候我们用数组操作数据可以极大的提升数据的处理效率, 类似于R的向量化操作,是的数据的操作趋于简单化,在python 中是使用numpy模块可以进行数组和矢量计算. 下面来看下简单 ...

  2. [读书笔记] Python数据分析 (三) IPython

    1. 什么是IPython IPyhton 本身没有提供任何的计算或者数据分析功能,在交互式计算和软件开发者两个方面最大化地提高生产力,execute-explore instead of edit- ...

  3. [读书笔记] Python数据分析 (五) pandas入门

    pandas: 基于Numpy构建的数据分析库 pandas数据结构:Series, DataFrame Series: 带有数据标签的类一维数组对象(也可看成字典) values, index 缺失 ...

  4. [读书笔记] Python数据分析 (一) 准备工作

    1. python中数据结构:矩阵,数组,数据框,通过关键列相互联系的多个表(SQL主键,外键),时间序列 2. python 解释型语言,程序员时间和CPU时间衡量,高频交易系统 3. 全局解释器锁 ...

  5. [读书笔记] Python数据分析 (二) 引言

      1. 数据分析的任务:数据读写,数据准备(清洗,修整,规范化,重塑,切片切块,变形),转换,建模计算,呈现(模型/数据) 2. 数据集: bit.ly的1.usa.gov数据:URL缩短服务bit ...

  6. [读书笔记] Python 数据分析 (十二)高级NumPy

    da array: 一个快速而灵活的同构多维大数据集容器,可以利用这种数组对整块的数据进行一些数学运算 数据指针,系统内存的一部分 数据类型 data type/dtype 指示数据大小的元组 str ...

  7. [读书笔记] Python 数据分析 (八)画图和数据可视化

    ipython3 --pyplot pyplot: matplotlib 画图的交互使用环境

  8. [读书笔记] Python 数据分析 (十一)经济和金融数据应用

    resample: 重采样函数,可以按照时间来提高或者降低采样频率,fill_method可以使用不同的填充方式. pandas.data_range 的freq参数枚举: Alias Descrip ...

  9. 《利用python进行数据分析》读书笔记--第四章 numpy基础:数组和矢量计算

    http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说, ...

随机推荐

  1. Hadoop安装和使用

    1.安装 1.1.下载hadoop-2.5.1.tar.gz 1.2.解压至安装目录 tar -zxv -f hadoop-2.5.1.tar.gz -C ../soft/ 1.3.配置hadoop相 ...

  2. 搞定PHP面试 - 深入了解引用

    1. 什么是引用 在 PHP 中引用是指用不同的名字访问同一个变量内容.PHP 中的变量名和变量内容是不一样的, 因此同样的内容可以有不同的名字.最接近的比喻是 Unix 的文件名和文件本身--变量名 ...

  3. spring 组件注册

    一.声明配置类和注册 bean /** * 配置类 == applicationContext.xml 配置文件 * @author Administrator * */ //@Configurati ...

  4. 关于参数net_buffer_length How MySQL Uses Memory

    http://dev.mysql.com/doc/refman/5.6/en/memory-use.html The following list indicates some of the ways ...

  5. HDU 4355

    只能说感觉是三分吧,因为两端值肯定是最大的,而中间肯定存在一点使之最小,呃,,,,猜 的... #include <iostream> #include <cstdio> #i ...

  6. HDU 2521

    了解反素数的定义: 反素数是指[1,n]内,比n小的数的约数个数都比n的约数个数要少.注意n其实是最后一个.而在区间内,[a,b]是明显无法满足条件的. 注意了最大才5000.所以,不妨使用枚举. # ...

  7. Ant批量处理jmeter脚本

    Ant是一个可以把代码从某个地方拿来,编译,再拷贝到某个地方去的构建工具.一时冲动学习一下,顺便王婆卖瓜尝试着处理jmeter的脚本,于是,采坑之旅也从此开始.本文省略ant安装步骤和ant脚本说明, ...

  8. 2015 Multi-University Training Contest 2 1006 Friends 壮压

    题目链接 题意:t 组測试数据,每组測试数据有 n个人,m条关系 每条关系能够是 "线上关系" 或者 "线下关系". 要求每一个人的线上关系(条数) == 线下 ...

  9. pcap文件生成metadata——使用tshark解析tcpdump的pcap包

    pcap文件生成metadata #!/usr/bin/env python # -*- coding: utf-8 -*- import os import time, datetime impor ...

  10. 2017-3-6 leetcode 118 169 189

    今天什么都没发生 ================================================= leetcode118 https://leetcode.com/problems ...