local_response_normalization 和 batch_normalization
Normalization
Normalization
local_response_normalization
local_response_normalization出现在论文”ImageNet Classification with deep Convolutional Neural Networks”中,论文中说,这种normalization对于泛化是有好处的.
经过了一个conv2d或pooling后,我们获得了[batch_size, height, width, channels]这样一个tensor.现在,将channels称之为层,不考虑batch_size
- i代表第i层
- aix,y就代表 第i层的 (x,y)位置所对应的值
- n个相邻feature maps.
- k...α...n...β是hyper parameters
- 可以看出,这个函数的功能就是, aix,y需要用他的相邻的map的同位置的值进行normalization
在alexnet中, k=2,n=5,α=10−4,β=0.75
tf.nn.local_response_normalization(input, depth_radius=None, bias=None, alpha=None, beta=None, name=None)
'''
Local Response Normalization.
The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted, squared sum of inputs within depth_radius. In detail,
'''
"""
input: A Tensor. Must be one of the following types: float32, half. 4-D.
depth_radius: An optional int. Defaults to 5. 0-D. Half-width of the 1-D normalization window.
bias: An optional float. Defaults to 1. An offset (usually positive to avoid dividing by 0).
alpha: An optional float. Defaults to 1. A scale factor, usually positive.
beta: An optional float. Defaults to 0.5. An exponent.
name: A name for the operation (optional).
"""
- depth_radius: 就是公式里的n/2
- bias : 公式里的k
- input: 将conv2d或pooling 的输出输入就行了[batch_size, height, width, channels]
- return :[batch_size, height, width, channels], 正则化后
batch_normalization
论文地址
batch_normalization, 故名思意,就是以batch为单位进行normalization
- 输入:mini_batch: In={x1,x2,..,xm}
- γ,β,需要学习的参数,都是向量
- ϵ: 一个常量
- 输出: Out={y1,y2,...,ym}
算法如下:
(1)mini_batch mean:
(2)mini_batch variance
(3)Normalize
(4)scale and shift
可以看出,batch_normalization之后,数据的维数没有任何变化,只是数值发生了变化
Out作为下一层的输入
函数:
tf.nn.batch_normalization()
def batch_normalization(x,
mean,
variance,
offset,
scale,
variance_epsilon,
name=None):
Args:
- x: Input
Tensorof arbitrary dimensionality. - mean: A mean
Tensor. - variance: A variance
Tensor. - offset: An offset
Tensor, often denoted β in equations, or None. If present, will be added to the normalized tensor. - scale: A scale
Tensor, often denoted γ in equations, orNone. If present, the scale is applied to the normalized tensor. - variance_epsilon: A small float number to avoid dividing by 0.
- name: A name for this operation (optional).
- Returns: the normalized, scaled, offset tensor.
对于卷积,x:[bathc,height,width,depth]
对于卷积,我们要feature map中共享 γi 和 βi ,所以 γ,β的维度是[depth]
现在,我们需要一个函数 返回mean和variance, 看下面.
tf.nn.moments()
def moments(x, axes, shift=None, name=None, keep_dims=False):
# for simple batch normalization pass `axes=[0]` (batch only).
对于卷积的batch_normalization, x 为[batch_size, height, width, depth],axes=[0,1,2],就会输出(mean,variance), mean 与 variance 均为标量。
local_response_normalization 和 batch_normalization的更多相关文章
- tensorflow中的batch_normalization实现
tensorflow中实现batch_normalization的函数主要有两个: 1)tf.nn.moments 2)tf.nn.batch_normalization tf.nn.moments主 ...
- Tensorflow BatchNormalization详解:4_使用tf.nn.batch_normalization函数实现Batch Normalization操作
使用tf.nn.batch_normalization函数实现Batch Normalization操作 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearnin ...
- 批量归一化batch_normalization
为了解决在深度神经网络训练初期降低梯度消失/爆炸问题,Sergey loffe和Christian Szegedy提出了使用批量归一化的技术的方案,该技术包括在每一层激活函数之前在模型里加一个操作,简 ...
- 请问batch_normalization做了normalization后为什么要变回来?
请问batch_normalization做了normalization后为什么要变回来? 请问batch_normalization做了normalization后为什么要变回来? - 莫驚蟄的回答 ...
- tensorflow 的 Batch Normalization 实现(tf.nn.moments、tf.nn.batch_normalization)
tensorflow 在实现 Batch Normalization(各个网络层输出的归一化)时,主要用到以下两个 api: tf.nn.moments(x, axes, name=None, kee ...
- Key in_hidden/batch_normalization/beta not found in checkpoint
可能原因:不同参数的结果保存到了同一文件夹下 解决方法:不同参数结果放在不同的checkpoints tf.train.Saver().save(sess, self.checkpoint_dir + ...
- CTPN项目部分代码学习
上次拜读了CTPN论文,趁热打铁,今天就从网上找到CTPN 的tensorflow代码实现一下,这里放出大佬的github项目地址:https://github.com/eragonruan/text ...
- TensorFlow 神经网络相关函数
TensorFlow 激活函数 激活操作提供用于神经网络的不同类型的非线性.这些包括平滑的非线性(sigmoid,tanh,elu,softplus,和softsign),连续的,但不是到处可微函数( ...
- TensorFlow NormLization
local_response_normalization local_response_normalization出现在论文”ImageNet Classification with deep Con ...
随机推荐
- [Android]异常6-TextView setText延迟显示
背景:Thread和Handler显示数据到界面 解决办法有: 解决一>界面使用了ListView.GridView等,把高度和宽度调整为固定值或者match_parent 解决二>某处U ...
- JS高级——变量提升
JS执行过程 1.首先是预解析:预解析过程最重要的是提升,在JavaScript代码在预解析阶段,会对以var声明的变量名,和function开头的语句块,进行提升操作 2.执行操作 全局中解析和执行 ...
- Python 之数据类型
# Numbers(数字) # int(有符号整型) # long(长整型[也可以代表八进制和十六进制]) # float(浮点型) # complex(复数) # String(字符串) # Lis ...
- jdbcUrl is required with driverClassName错误解决
jdbcUrl is required with driverClassName springboot2.0配置多数据源: spring.datasource.primary.url=jdbc:mys ...
- profiler-gpu分析记录
查看 Android 手机芯片信息下面以 夜神模拟器为例 D:\cmderλ adb devices # 1. 列出安卓设备List of devices attached127.0.0.1:6200 ...
- 转载:python 日期,季度,年份
# 这个data_matrix[:,dimen] <= thresh_val 内标会返回data_matrix当中的值符合条件的,返回为True # ret_array 中就会返回 下标为Tru ...
- swift--Xcode7 使用Alamofire框架发送HTTP请求报错
控制台打印的错误信息: Application Transport Security has blocked a cleartext HTTP (http://) resource load sinc ...
- CF17E Palisection (回文自动机+DP)
题目传送门 题目大意:给你一个字符串,让你求出有多少对相交的回文子串 啊啊啊啊降智了,我怎么又忘了正难则反! 求相交会很难搞.把问题转化成求互不相交的回文子串再减一下就行了 先利用$PAM$求出以每个 ...
- [pytorch学习]1.pytorch ubuntu安装
看完了Deep Learning with Python,尝试了部分Keras的demo代码. 感觉Keras虽然容易上手,能够快速搭建出一个通用的模型,但是缺乏对底层的控制. 同时,在使用了自己编译 ...
- centOS防火墙
默认防火墙firewall #停止firewall systemcl stop firewall.service #禁止firewall开机启动 systemctl disable firewall. ...