[Ramda] Curry and Uncurry Functions with Ramda
Most of the functions offered by the ramda library are curried by default. Functions you've created or that you've pulled in from another library may not be curried. Ramda's curry and curryN functions allow you to take a non-curried function and use it as a curried functions. In the case where you have a manually curried function and you want to just call it like a normal function, you can use uncurryN to get back a function that accepts all of the arguments at once.
What is manully curry?
const add = a => b => a + b;
When we call it, we should do:
add()();
or
const inc = add();
const res = inc();
What is R.curry?
const add = R.curry((a, b) => a + b);
when we all this, we can do:
const inc = add();
const res = inc();
or:
add(,)
So the main difference between R.curry and manully curry function is R.curry allow user pass all the params necessary at once. But manully curry, you have to invoke the function twice.
R.curryN:
Actually R.curryN is basiclly the same as R.curry. Just it tells how many params the curry function should expect.
var sumArgs = (...args) => R.sum(args); var curriedAddFourNumbers = R.curryN(4, sumArgs);
var f = curriedAddFourNumbers(, );
var g = f();
g(); //=> 10
So in the example, it has 4 params.
R.uncurryN:
It is used for manully curry, so that we don't need to invoke function multi times, just pass all the params which necessary at once.
const add = a => b => c => a + b+ c; // manually curry // if we call normally
add()()(); // if we uncurry it
const sum = R.uncurryN(, add);
const res = sum(,,); //
[Ramda] Curry and Uncurry Functions with Ramda的更多相关文章
- [Ramda] Convert Object Methods into Composable Functions with Ramda
In this lesson, we'll look at how we can use Ramda's invoker and constructNfunctions to take methods ...
- [Ramda] Refactor to Point Free Functions with Ramda using compose and converge
In this lesson we'll take some existing code and refactor it using some functions from the Ramda lib ...
- [Ramda] Curry, Compose and Pipe examples
const curry = R.curry((fns, ary) => R.ap(fns, ary)); ), R.add()]); ,,]); console.log(res); //[2, ...
- 从函数式编程到Ramda函数库(二)
Ramda 基本的数据结构都是原生 JavaScript 对象,我们常用的集合是 JavaScript 的数组.Ramda 还保留了许多其他原生 JavaScript 特性,例如,函数是具有属性的对象 ...
- [Javascript] Monads
Monads allow you to nest computations. They are a pointed functor that adds mjoin and chain function ...
- [Javascript] Functor Basic Intro
Well, this stuff will be a little bit strange if you deal with it first time. Container Object: Just ...
- [Javascript Crocks] Safely Access Object Properties with `prop`
In this lesson, we’ll use a Maybe to safely operate on properties of an object that could be undefin ...
- 如何编写高质量的 JS 函数(4) --函数式编程[实战篇]
本文首发于 vivo互联网技术 微信公众号 链接:https://mp.weixin.qq.com/s/ZoXYbjuezOWgNyJKmSQmTw作者:杨昆 [编写高质量函数系列],往期精彩内容: ...
- programming-languages学习笔记--第3部分
programming-languages学习笔记–第3部分 */--> pre.src {background-color: #292b2e; color: #b2b2b2;} pre.src ...
随机推荐
- BZOJ2780: [Spoj]8093 Sevenk Love Oimaster(广义后缀自动机,Parent树,Dfs序)
Description Oimaster and sevenk love each other. But recently,sevenk heard that a girl named ChuYuXu ...
- BZOJ1396: 识别子串(后缀自动机,线段树)
Description Input 一行,一个由小写字母组成的字符串S,长度不超过10^5 Output L行,每行一个整数,第i行的数据表示关于S的第i个元素的最短识别子串有多长. Sample I ...
- 【2017 Multi-University Training Contest - Team 9】FFF at Valentine
[链接]http://acm.hdu.edu.cn/showproblem.php?pid=6165 [题意] 一张有向图,n个点,m条边,保证没有重边和自环.询问任意两个点能否满足任何一方能够到达另 ...
- Stack switching mechanism in a computer system
A method and mechanism for performing an unconditional stack switch in a processor. A processor incl ...
- 【MapReduce】经常使用计算模型具体解释
前一阵子參加炼数成金的MapReduce培训,培训中的作业样例比較有代表性,用于解释问题再好只是了. 有一本国外的有关MR的教材,比較有用.点此下载. 一.MapReduce应用场景 MR能解决什么问 ...
- 老调重弹:JDBC系列 之 <驱动载入原理全面解析>
前言 近期在研究Mybatis框架,因为该框架基于JDBC.想要非常好地理解和学习Mybatis,必需要对JDBC有较深入的了解.所以便把JDBC 这个东东翻出来.好好总结一番,作为自己的笔记,也是给 ...
- Docker---(2)为什么要用Docker
原文:Docker---(2)为什么要用Docker 版权声明:欢迎转载,请标明出处,如有问题,欢迎指正!谢谢!微信:w1186355422 https://blog.csdn.net/weixin_ ...
- 洛谷 P1178 到天宫做客
P1178 到天宫做客 题目描述 有一天,我做了个梦,梦见我很荣幸的接到了猪八戒的邀请,到天宫陪他吃酒.我犹豫了.天上一日,人间一年啊!当然,我是个闲人,一年之中也没有多少时日是必须在人间的,因此,我 ...
- ACdream 1127 Base Station (离线查询+树状数组)
题目链接: http://acdream.info/problem?pid=1127 题目: 移动通信系统中,通信网的建立主要通过基站来完成. 基站可以分为主基站和子基站.子基站和各个移动用户进行连接 ...
- 并发,one
引言 最近工作当中写了一个有关并发的程序,引起了LZ对并发的强烈兴趣.这一下一发不可收拾,LZ用了一个多星期,看完了这本共280+页的并发编程书.之所以能看这么快,其实这主要归功于,自己之前对并发就有 ...