[Ramda] Curry and Uncurry Functions with Ramda
Most of the functions offered by the ramda library are curried by default. Functions you've created or that you've pulled in from another library may not be curried. Ramda's curry
and curryN
functions allow you to take a non-curried function and use it as a curried functions. In the case where you have a manually curried function and you want to just call it like a normal function, you can use uncurryN
to get back a function that accepts all of the arguments at once.
What is manully curry?
const add = a => b => a + b;
When we call it, we should do:
add()();
or
const inc = add();
const res = inc();
What is R.curry?
const add = R.curry((a, b) => a + b);
when we all this, we can do:
const inc = add();
const res = inc();
or:
add(,)
So the main difference between R.curry and manully curry function is R.curry allow user pass all the params necessary at once. But manully curry, you have to invoke the function twice.
R.curryN:
Actually R.curryN is basiclly the same as R.curry. Just it tells how many params the curry function should expect.
var sumArgs = (...args) => R.sum(args); var curriedAddFourNumbers = R.curryN(4, sumArgs);
var f = curriedAddFourNumbers(, );
var g = f();
g(); //=> 10
So in the example, it has 4 params.
R.uncurryN:
It is used for manully curry, so that we don't need to invoke function multi times, just pass all the params which necessary at once.
const add = a => b => c => a + b+ c; // manually curry // if we call normally
add()()(); // if we uncurry it
const sum = R.uncurryN(, add);
const res = sum(,,); //
[Ramda] Curry and Uncurry Functions with Ramda的更多相关文章
- [Ramda] Convert Object Methods into Composable Functions with Ramda
In this lesson, we'll look at how we can use Ramda's invoker and constructNfunctions to take methods ...
- [Ramda] Refactor to Point Free Functions with Ramda using compose and converge
In this lesson we'll take some existing code and refactor it using some functions from the Ramda lib ...
- [Ramda] Curry, Compose and Pipe examples
const curry = R.curry((fns, ary) => R.ap(fns, ary)); ), R.add()]); ,,]); console.log(res); //[2, ...
- 从函数式编程到Ramda函数库(二)
Ramda 基本的数据结构都是原生 JavaScript 对象,我们常用的集合是 JavaScript 的数组.Ramda 还保留了许多其他原生 JavaScript 特性,例如,函数是具有属性的对象 ...
- [Javascript] Monads
Monads allow you to nest computations. They are a pointed functor that adds mjoin and chain function ...
- [Javascript] Functor Basic Intro
Well, this stuff will be a little bit strange if you deal with it first time. Container Object: Just ...
- [Javascript Crocks] Safely Access Object Properties with `prop`
In this lesson, we’ll use a Maybe to safely operate on properties of an object that could be undefin ...
- 如何编写高质量的 JS 函数(4) --函数式编程[实战篇]
本文首发于 vivo互联网技术 微信公众号 链接:https://mp.weixin.qq.com/s/ZoXYbjuezOWgNyJKmSQmTw作者:杨昆 [编写高质量函数系列],往期精彩内容: ...
- programming-languages学习笔记--第3部分
programming-languages学习笔记–第3部分 */--> pre.src {background-color: #292b2e; color: #b2b2b2;} pre.src ...
随机推荐
- Android RecyclerView And CardView
Google I/O 2014大会公布Android L系统,还有Material Design全新的设计风格.而Material Design卡片式的设计.Google Play应用商店和G+ AP ...
- 06 Jenkins自动化构建
• 在之前的freestyle任务基础上,实现构建功能• 检查maven环境• 构建命令:mvn clean compile• 归档构建产物• 演练参数的使用• 通过配置Trigger进行自动构建• ...
- hdu5389
题意:给你n个人每一个人手里有一个id,然后给你两个数a和b.让你把n个人分为两组.条件是 一组人手里的id和等于a 另一组人的id和等于b,这里的和是指加起来之后对9取余,假设sum等于0 则sum ...
- 洛谷—— P1168 中位数
https://www.luogu.org/problem/show?pid=1168 题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], ...
- android开发-获取wifi列表
近期博主在学frangment框架,因此想着想着就想通过listfragment完毕对wifi列表的获取. 好! 如今就不说废话了. 一.wifi的基础知识 在Android的官方文档中定义了例如以下 ...
- Datasets for MachineLearning
Public datasets for machine learning http://homepages.inf.ed.ac.uk/rbf/IAPR/researchers/MLPAGES/mld ...
- thinkphp模拟请求和参数绑定
thinkphp模拟请求和参数绑定 一.总结 1.网页传过来的参数是可以修改的:get或者post等方式 传过来的参数是可以修改的 dump($request->get(['id'=>2 ...
- 关于Altium Designer重新修改某一原件pcb封装的问题
在重新导入的时候可能会影响到类class,所以可能是原理图中没有类吧 上图中的comment的修改是表示下面图片中的 comment栏的改变:
- [转载]Surging 分布式微服务框架使用入门
前言 本文非 Surging 官方教程,只是自己学习的总结.如有哪里不对,还望指正. 我对 surging 的看法 我目前所在的公司采用架构就是类似与Surging的RPC框架,在.NET 4.0框架 ...
- 【例题 6-6 UVA - 679】Dropping Balls
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 直接模拟会超时. 根据奇偶的规律.直接判断会往哪里走就好. 每个二叉树的节点.必然是左边和右边走的次数对半分.->奇数左边多一 ...