注:原文中的代码是在spark-shell中编写运行的,本人的是在eclipse中编写运行,所以结果输出形式可能会与这本书中的不太一样。

首先将用户数据u.data读入SparkContext中。然后输出第一条数据看看效果。代码例如以下:

val sc = new SparkContext("local", "ExtractFeatures")
val rawData = sc.textFile("F:\\ScalaWorkSpace\\data\\ml-100k\\u.data")
println(rawData.first())

注意:第一行代码我创建了spark上下文,假设你是在spark-shell中运行代码。它会自己主动创建好spark上下文,名字为sc,我是在eclipse中编写代码。所以须要自己编写代码创建spark上下文,我们能够看到有例如以下输出:

每条数据是由“\t”分隔的,我们如今要取出每条数据,然后再取到每条数据的前三个元素。即用户ID。电影ID,用户给电影的评分,代码例如以下:

val rawRatings = rawData.map(_.split("\t").take(3))
rawRatings.first().foreach(println)

能够看到相似例如以下的输出:

接下来我们将使用spark内置的MLlib库来训练我们的模型。先来看看有哪些方法能够使用,须要什么參数作为输入。首先我们导入内置库文件ALS:

import org.apache.spark.mllib.recommendation.ALS

接下来的操作是在spark-shell中完毕的。在控制台下输入ALS.(注意ALS后面有一个点)加上tap键:



我们将要使用到的方法是train方法。

假设我们输入ALS.train,会返回一个错误,可是我们能够从这个错误中看看这种方法的细节:



能够看到,我们最少要提供三个參数:ratings,rank,iterations。第二个方法还须要另外一个參数lambda。我们先来看看參数rating的类Rating:



我们能够看到,我们须要向ALS模型提供一个包括Rating的RDD。Rating将user id。movie id(就是这里的product)和rating封装起来。

我们将在评分数据集(rating dataset)上使用map方法。将ID和评分的数组转换成Rating对象:

val ratings = rawRatings.map {
case Array(user, movie, rating) =>
Rating(user.toInt, movie.toInt, rating.toDouble)
}
println(ratings.first())

输出例如以下:



如今我们得到了一个Rating类型的RDD。

Machine Learning With Spark学习笔记(提取10万电影数据特征)的更多相关文章

  1. Machine Learning With Spark学习笔记(在10万电影数据上训练、使用推荐模型)

    我们如今開始训练模型,还输入參数例如以下: rank:ALS中因子的个数.通常来说越大越好,可是对内存占用率有直接影响,通常rank在10到200之间. iterations:迭代次数,每次迭代都会降 ...

  2. Deep learning with Python 学习笔记(10)

    生成式深度学习 机器学习模型能够对图像.音乐和故事的统计潜在空间(latent space)进行学习,然后从这个空间中采样(sample),创造出与模型在训练数据中所见到的艺术作品具有相似特征的新作品 ...

  3. Coursera 机器学习 第6章(下) Machine Learning System Design 学习笔记

    Machine Learning System Design下面会讨论机器学习系统的设计.分析在设计复杂机器学习系统时将会遇到的主要问题,给出如何巧妙构造一个复杂的机器学习系统的建议.6.4 Buil ...

  4. Machine Learning(Andrew Ng)学习笔记

    1.监督学习(supervised learning)&非监督学习(unsupervised learning) 监督学习:处理具有若干属性且返回值不同的对象.分为回归型和分类型:回归型的返回 ...

  5. Deep learning with Python 学习笔记(11)

    总结 机器学习(machine learning)是人工智能的一个特殊子领域,其目标是仅靠观察训练数据来自动开发程序[即模型(model)].将数据转换为程序的这个过程叫作学习(learning) 深 ...

  6. Deep learning with Python 学习笔记(9)

    神经网络模型的优化 使用 Keras 回调函数 使用 model.fit()或 model.fit_generator() 在一个大型数据集上启动数十轮的训练,有点类似于扔一架纸飞机,一开始给它一点推 ...

  7. 机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据

    机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据 关键字:PCA.主成分分析.降维作者:米仓山下时间:2018-11-15机器学习实战(Ma ...

  8. Deep learning with Python 学习笔记(8)

    Keras 函数式编程 利用 Keras 函数式 API,你可以构建类图(graph-like)模型.在不同的输入之间共享某一层,并且还可以像使用 Python 函数一样使用 Keras 模型.Ker ...

  9. Deep learning with Python 学习笔记(7)

    介绍一维卷积神经网络 卷积神经网络能够进行卷积运算,从局部输入图块中提取特征,并能够将表示模块化,同时可以高效地利用数据.这些性质让卷积神经网络在计算机视觉领域表现优异,同样也让它对序列处理特别有效. ...

随机推荐

  1. TaoCode-淘宝的SVN开源托管平台

    无意中发现的..试用了一下,感觉还不错, 简单说一下怎样使用: 进入 http://code.taobao.org/project/explore/ 注冊完后依据提示新建项目,然后在本地随便新建一个文 ...

  2. 一题多解(三)—— Python 字符串的拼接

    1. format def event_log(name, time): print('Event: {}, happens at {}'.format(name, str(time))) 2. 使用 ...

  3. 30.IntellJ Idea 导入已存在的Maven项目

    转自:https://blog.csdn.net/epdc2/article/details/53767386

  4. 企业实战之部署Solarwinds Network八部众

    企业实战之部署Solarwinds Network 网管系统八部众 Orion Network Performance Monitor是全面的带宽性能监控和故障管理软件,能监控并收集来自路由器.交换机 ...

  5. Node.js REPL(交互式解析器)

    Node.js REPL(交互式解释器) Node 自带了交互式解释器,可以执行以下任务: 读取 - 读取用户输入,解析输入了Javascript 数据结构并存储在内存中. 执行 - 执行输入的数据结 ...

  6. 跟我一起造轮子 手写springmvc

    原创地址:https://www.cnblogs.com/xrog/p/9820168.html 作为java程序员,项目中使用到的主流框架多多少少和spring有关联,在面试的过程难免会问一些spr ...

  7. 韦东山ARM裸机笔记(2)--vi编辑器

    VI编辑器(Visual Interface--可视化接口) 一.Linux下的一个文本编辑器,所具备的基本功能: 打开.新建.保存文件 光标移动 文本编辑 (多行间 | 多列间)复制.粘贴.删除 查 ...

  8. Lusac定理

    转载大佬的模版:http://www.cnblogs.com/vongang/archive/2012/12/02/2798138.html

  9. 洛谷 P1400 塔

    P1400 塔 题目描述 有N(2<=N<=600000)块砖,要搭一个N层的塔,要求:如果砖A在砖B上面,那么A不能比B的长度+D要长.问有几种方法,输出 答案 mod 10000000 ...

  10. Android中关于JNI 的学习(零)简单的样例,简单地入门

    Android中JNI的作用,就是让Java可以去调用由C/C++实现的代码,为了实现这个功能.须要用到Anrdoid提供的NDK工具包,在这里不讲怎样配置了,好麻烦,配置了好久. . . 本质上,J ...