一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级……它也能够跳上n级。

求该青蛙跳上一个n级的台阶总共同拥有多少种跳法。

分析:
这是一个斐波拉契数列的引申问题,先来看看斐波拉契数列:
n<=1,    f(n)=1;
n>=2,    f(n)=f(n-1)+f(n-2);
假设这个题变一下“一仅仅青蛙一次能够跳上1级台阶。也能够跳上2级。求该青蛙跳上一个n级的台阶总共同拥有多少种跳法。”就成了典型的斐波拉契数列问题了。
回过头来看这个题,貌似没有头绪。怎么办,採用最笨的方法。穷举:
n<=1,     f(n)=1;
n=2,        f(2)=2;
n=3,        f(3)=4;    
第一次走一步,2种。第一次走俩步,1种。一次走三步。1种;
n=4,        f(4)=8;    
第一次走一步,4种。第一次走俩步,2种;第一次走三步。1种。一次走四步,1种。
是不是看到规律了:
f(n)=f(n-1)+f(n-2)+.....+f(1)+f(0)=2f(n-1)
上Java代码:
public class Solution {
    public int JumpFloorII(int target) {
      if(target<=1)
            return 1;
        else
            return 2*JumpFloorII(target-1);
    }
}

A题之变态青蛙跳的更多相关文章

  1. Python算法题(一)——青蛙跳台阶

    题目一(青蛙跳台阶): 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 分析: 假设只有一级台阶,则总共只有一种跳法: 假设有两级台阶,则总共有两种跳法: ...

  2. 青蛙跳N阶(变态跳)

    https://www.nowcoder.com/questionTerminal/22243d016f6b47f2a6928b4313c85387 描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级 ...

  3. 【校招面试 之 剑指offer】第10-2题 青蛙跳台阶问题

    题目1:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶.求该青蛙跳上一个n级台阶共有多少种跳法? 题目2:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶...也可以一次跳n级台阶.求该青蛙跳上一个 ...

  4. 剑指offer-第二章算法之斐波拉契数列(青蛙跳台阶)

    递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调 ...

  5. 剑指offer 9-10:青蛙跳台阶与Fibonacii数列

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 问题分析 我们将跳法个数y与台阶数n视为一个函数关系,即y=f(n). ...

  6. 青蛙跳台阶(Fibonacci数列)

    问题 一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. 思路 当n=1时,只有一种跳法,及f(1)=1,当n=2时,有两种跳法,及f(2)=2,当n= ...

  7. 青蛙跳台阶问题——剑指offer

    题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶,求该青蛙跳上一个n级台阶总共有多少中跳法. http://www.nowcoder.com/books/coding-interviews?pa ...

  8. 剑指offer青蛙跳台阶问题

    (1)一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. //递归方式  public static int f(int n) { //参数合法性验证 ...

  9. [蓝桥杯]PREV-44.历届试题_青蛙跳杯子

    问题描述 X星球的流行宠物是青蛙,一般有两种颜色:白色和黑色. X星球的居民喜欢把它们放在一排茶杯里,这样可以观察它们跳来跳去. 如下图,有一排杯子,左边的一个是空着的,右边的杯子,每个里边有一只青蛙 ...

随机推荐

  1. java实现随机数的生成

    一,课程中的动手动脑的问题 1,编写一个方法,使用以上算法生成指定数目的随机整数. public void suiJiShu(){ Scanner input=new Scanner(System.i ...

  2. UVALIVE 4256 Salesmen

    Salesmen Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVALive. Original ...

  3. Redis介绍、安装部署、操作

    学习连接:http://www.runoob.com/redis/redis-tutorial.html 一.Redis介绍 Redis是NoSql的一种. NoSql,全名:Not Only Sql ...

  4. Core abstraction layer for telecommunication network applications

    A new sub-system, the core abstraction layer (CAL), is introduced to the middleware layer of the mul ...

  5. 创业笔记-Node.js入门之基于事件驱动的回调

    基于事件驱动的回调 这个问题可不好回答(至少对我来说),不过这是Node.js原生的工作方式.它是事件驱动的,这也是它为什么这么快的原因. 你也许会想花点时间读一下Felix Geisendörfer ...

  6. magento megatron主题加入中文

    magento的megatron默认不支持中文,全部我们须要在它的本地化目录中加入中文的cvs文件,加入方法例如以下: 1.切换至 app ▸ design ▸ frontend ▸ megatron ...

  7. 纯粹的K12精髓 - 名师指导整理《20以内加法口诀表》

    纯粹的K12精髓 - 名师指导整理<20以内加法口诀表> 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一 ...

  8. OPENWRT中SSH免密钥登陆(具体步骤)

    通过使用ssh-keygen生成公钥,在两台机器之间互相建立新人通道极客. 如果本地机器是client,远程机器为server. 1.使用ssh-keygen生成rsa keygen(在这里会覆盖曾经 ...

  9. Codeforces 13C Sequence dp

    题目链接:http://codeforces.com/problemset/problem/13/C 题意: 给定n长的序列 每次操作能够给每一个数++或-- 问最少须要几步操作使得序列变为非递减序列 ...

  10. jQuery操作元素的属性与样式

    本文学习如何使用jQuery获取和操作元素的属性和CSS样式. 元素属性和Dom属性 对于下面这样一个标签元素: <img id='img' src="1.jpg" alt= ...