一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级……它也能够跳上n级。

求该青蛙跳上一个n级的台阶总共同拥有多少种跳法。

分析:
这是一个斐波拉契数列的引申问题,先来看看斐波拉契数列:
n<=1,    f(n)=1;
n>=2,    f(n)=f(n-1)+f(n-2);
假设这个题变一下“一仅仅青蛙一次能够跳上1级台阶。也能够跳上2级。求该青蛙跳上一个n级的台阶总共同拥有多少种跳法。”就成了典型的斐波拉契数列问题了。
回过头来看这个题,貌似没有头绪。怎么办,採用最笨的方法。穷举:
n<=1,     f(n)=1;
n=2,        f(2)=2;
n=3,        f(3)=4;    
第一次走一步,2种。第一次走俩步,1种。一次走三步。1种;
n=4,        f(4)=8;    
第一次走一步,4种。第一次走俩步,2种;第一次走三步。1种。一次走四步,1种。
是不是看到规律了:
f(n)=f(n-1)+f(n-2)+.....+f(1)+f(0)=2f(n-1)
上Java代码:
public class Solution {
    public int JumpFloorII(int target) {
      if(target<=1)
            return 1;
        else
            return 2*JumpFloorII(target-1);
    }
}

A题之变态青蛙跳的更多相关文章

  1. Python算法题(一)——青蛙跳台阶

    题目一(青蛙跳台阶): 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 分析: 假设只有一级台阶,则总共只有一种跳法: 假设有两级台阶,则总共有两种跳法: ...

  2. 青蛙跳N阶(变态跳)

    https://www.nowcoder.com/questionTerminal/22243d016f6b47f2a6928b4313c85387 描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级 ...

  3. 【校招面试 之 剑指offer】第10-2题 青蛙跳台阶问题

    题目1:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶.求该青蛙跳上一个n级台阶共有多少种跳法? 题目2:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶...也可以一次跳n级台阶.求该青蛙跳上一个 ...

  4. 剑指offer-第二章算法之斐波拉契数列(青蛙跳台阶)

    递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调 ...

  5. 剑指offer 9-10:青蛙跳台阶与Fibonacii数列

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 问题分析 我们将跳法个数y与台阶数n视为一个函数关系,即y=f(n). ...

  6. 青蛙跳台阶(Fibonacci数列)

    问题 一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. 思路 当n=1时,只有一种跳法,及f(1)=1,当n=2时,有两种跳法,及f(2)=2,当n= ...

  7. 青蛙跳台阶问题——剑指offer

    题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶,求该青蛙跳上一个n级台阶总共有多少中跳法. http://www.nowcoder.com/books/coding-interviews?pa ...

  8. 剑指offer青蛙跳台阶问题

    (1)一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. //递归方式  public static int f(int n) { //参数合法性验证 ...

  9. [蓝桥杯]PREV-44.历届试题_青蛙跳杯子

    问题描述 X星球的流行宠物是青蛙,一般有两种颜色:白色和黑色. X星球的居民喜欢把它们放在一排茶杯里,这样可以观察它们跳来跳去. 如下图,有一排杯子,左边的一个是空着的,右边的杯子,每个里边有一只青蛙 ...

随机推荐

  1. Qt Designer设计 UI 文件并调用

    本文介绍的是Qt Designer设计 UI 文件并调用,在坛子里逛了一圈,关于UI方面的好像不怎多,本篇给大家分享一下. AD: 2013云计算架构师峰会超低价抢票中 Qt Designer设计 U ...

  2. 小学生都能学会的python(生成器)

    小学生都能学会的python(生成器) 1. 生成器 生成器的本质就是迭代器. 生成器由生成器函数来创建或者通过生成器表达式来创建 # def func(): # lst = [] # for i i ...

  3. WPF原生环形图表

    原文:WPF原生环形图表 版权声明:欢迎转载.转载请注明出处,谢谢 https://blog.csdn.net/wzcool273509239/article/details/56480963 主要利 ...

  4. 阿里云Linux系统Nginx配置多个域名的方法

    Nginx绑定多个域名,可通过把多个域名规则写一个配置文件里实现,也可通过分别建立多个域名配置文件实现,为了管理方便,建议每个域名建一个文件,有些同类域名则可写在一个总的配置文件里. 1. 比如我想建 ...

  5. tp框架表单提交注意!不要提交到当前方法

    tp框架  表单提交到当前方法,会重复执行显示部分和保存部分的代码.导致不知名的错误.

  6. 【BZOJ 1266】 [AHOI2006]上学路线route

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 第一问是个最短路. 第二问. 利用第一问floyd算出来的任意两点之间的最短路. 那么枚举每一条边(x,y) 如果w[1][x]+c ...

  7. 洛谷 P2949 [USACO09OPEN]工作调度Work Scheduling

    P2949 [USACO09OPEN]工作调度Work Scheduling 题目描述 Farmer John has so very many jobs to do! In order to run ...

  8. 开源ETL工具kettle--数据迁移

    背景 因为项目的需求,须要将数据从Oracle迁移到MSSQL,不是简单的数据复制,而是表结构和字段名都不一样.甚至须要处理编码规范不一致的情况,例如以下图所看到的 watermark/2/text/ ...

  9. ORACLE 索引批量重建

    按用户批量重建索引: 按用户将此用户下面非临时表上面的索引全部重建,此过程建议在SYS用户下面执行: CREATE OR REPLACE PROCEDURE BATCH_REBUILD_INDEX(U ...

  10. js小知识 双叹号(!!)

    !!:一般用来将后面的表达式强制转换为布尔值(boolean):true或者false; avascript约定规则为:  false.undefinded.null.0.”” 为 false  tr ...