一、tensorflow提供的evaluation

Inference and evaluation on the Open Images dataset:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/oid_inference_and_evaluation.md

该链接中详细介绍了如何针对Open Images dataset数据集进行inference和evaluation,按照此教程,在models/research目录下新建oid文件夹,并将数据集以及验证集下载并放在此文件夹下。后续可能不会用到,待删除。

tensorflow提供的官方detection demo可参考:https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb

但是后来发现在~/rdshare/detection/detection/py的脚本中,检测结果中有类别,目标框的位置等,可据此计算map,recall等,所以没有继续根据上边的链接继续做。

二、自主计算

在~/rdshare/detection/detection/py脚本中,通过 boxes = detection_graph.get_tensor_by_name('detection_boxes:0') 可获得目标框的坐标。print之后结果如下

结果中应该是两个物体的坐标。

然后参考https://blog.csdn.net/qq_17550379/article/details/79875784 中的代码,可以计算map

def voc_ap(rec, prec, use_07_metric=False):
if use_07_metric:
# 11 point metric
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
else:
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
i = np.where(mrec[1:] != mrec[:-1])[0]
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap

另外可参考的链接

https://blog.csdn.net/ziliwangmoe/article/details/81415943

https://zhuanlan.zhihu.com/p/37910324

本论文中可考虑不用maP,只计算目标是否出现等方式,或者用yolo做ground truth。

tensorflow利用预训练模型进行目标检测(四):检测中的精度问题以及evaluation的更多相关文章

  1. tensorflow利用预训练模型进行目标检测(二):预训练模型的使用

    一.运行样例 官网链接:https://github.com/tensorflow/models/blob/master/research/object_detection/object_detect ...

  2. tensorflow利用预训练模型进行目标检测(一):安装tensorflow detection api

    一.tensorflow安装 首先系统中已经安装了两个版本的tensorflow,一个是通过keras安装的, 一个是按照官网教程https://www.tensorflow.org/install/ ...

  3. tensorflow利用预训练模型进行目标检测(三):将检测结果存入mysql数据库

    mysql版本:5.7 : 数据库:rdshare:表captain_america3_sd用来记录某帧是否被检测.表captain_america3_d用来记录检测到的数据. python模块,包部 ...

  4. caffe-ssd使用预训练模型做目标检测

    首先参考https://www.jianshu.com/p/4eaedaeafcb4 这是一个傻瓜似的目标检测样例,目前还不清楚图片怎么转换,怎么验证,后续继续跟进 模型测试(1)图片数据集上测试 p ...

  5. 我的Keras使用总结(4)——Application中五款预训练模型学习及其应用

    本节主要学习Keras的应用模块 Application提供的带有预训练权重的模型,这些模型可以用来进行预测,特征提取和 finetune,上一篇文章我们使用了VGG16进行特征提取和微调,下面尝试一 ...

  6. 预训练模型——开创NLP新纪元

    预训练模型--开创NLP新纪元 论文地址 BERT相关论文列表 清华整理-预训练语言模型 awesome-bert-nlp BERT Lang Street huggingface models 论文 ...

  7. 文本分类实战(九)—— ELMO 预训练模型

    1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...

  8. Paddle预训练模型应用工具PaddleHub

    Paddle预训练模型应用工具PaddleHub 本文主要介绍如何使用飞桨预训练模型管理工具PaddleHub,快速体验模型以及实现迁移学习.建议使用GPU环境运行相关程序,可以在启动环境时,如下图所 ...

  9. 预训练模型与Keras.applications.models权重资源地址

    什么是预训练模型 简单来说,预训练模型(pre-trained model)是前人为了解决类似问题所创造出来的模型.你在解决问题的时候,不用从零开始训练一个新模型,可以从在类似问题中训练过的模型入手. ...

随机推荐

  1. 自学Python六 爬虫基础必不可少的正则

    要想做爬虫,不可避免的要用到正则表达式,如果是简单的字符串处理,类似于split,substring等等就足够了,可是涉及到比较复杂的匹配,当然是正则的天下,不过正则好像好烦人的样子,那么如何做呢,熟 ...

  2. JavaScript 判断手机端操作系统(Andorid/IOS)

    androidURL = "http://xxx/xxx.apk"; var browser = { versions: function() { var u = navigato ...

  3. CSS浮动的处理

    之前已经发过一遍有关浮动的解决办法,今天看到一些资料后又有了新的想法: 在CSS布局中float属性经常会被用到,但使用float属性后会使其在普通流中脱离父容器,让人很苦恼 1 浮动带来布局的便利, ...

  4. 3.0 Windows和Linux双系统安装(3)

    3.0 Windows和Linux双系统安装(3) 3.1 精简的安装步骤如下:(如果已经有了前面两篇教程的安装经验,推荐看完3.1即可动手了) 双系统很多开发新人会用到,而且比起虚拟机好处是运行效率 ...

  5. java编程基础篇-------> 从键盘输入一位整数,代表月份,编程判断指定月份属于一年中的哪个季度。如果是 12 月、1 月、2 月,就属于冬季。

    从键盘输入一位整数,代表月份,编程判断指定月份属于一年中的哪个季度.如果是 12月.1 月.2 月,就属于冬季:如果是 3 月.4 月.5 月,就属于春季:如果是 6 月.7 月.8 月,就属于夏季: ...

  6. CVPR2015深度学习回顾

    原文链接:http://www.csdn.net/article/2015-08-06/2825395 本文做了少量修改,仅作转载存贮,如有疑问或版权问题,请访问原作者或告知本人. CVPR可谓计算机 ...

  7. texi格式文件的读取

    使用texi2html可以将texi格式的文件转换成html格式的文件. sudo apt-get install texi2html 在对应目录下 texi2html filename.texi 或 ...

  8. [Intermediate Algorithm] - Drop it

    题目 队友该卖就卖,千万别舍不得. 当你的队伍被敌人包围时,你选择拯救谁.抛弃谁非常重要,如果选择错误就会造成团灭. 如果是AD或AP,优先拯救. 因为AD和AP是队伍输出的核心. 其次应该拯救打野. ...

  9. 【sqli-labs】 less12 POST - Error Based - Double quotes- String-with twist (基于错误的双引号POST型字符型变形的注入)

    加个双引号 通过报错信息猜测SQL语句 , 将括号闭合掉,通过注释后面的条件登录

  10. (转)OL记载Arcgis Server切片

    http://blog.csdn.net/gisshixisheng/article/details/47955787 概述: 本文讲述如何在OpenLayers中调用Arcgis Server切片并 ...