【并行计算-CUDA开发】GPU---并行计算利器
1 GPU是什么
如图1所示,这台PC机与普通PC机不同的是这里插了7张显卡,左下角是显卡,在中间的就是GPU芯片。显卡的处理器称为图形处理器(GPU),它是显卡的“心脏”,与CPU类似,只不过GPU是专为执行复杂的数学和几何计算而设计的。
GPU计算能力非常强悍,举个例子:现在主流的i7处理器的浮点计算能力是主流的英伟达GPU处理器浮点计算能力的1/12。

图1 显卡与GPU
2 为什么GPU计算能力如此强悍?
图2对CPU与GPU中的逻辑架构进行了对比。其中Control是控制器、ALU算术逻辑单元、Cache是cpu内部缓存、DRAM就是内存。可以看到GPU设计者将更多的晶体管用作执行单元,而不是像CPU那样用作复杂的控制单元和缓存。从实际来看,CPU芯片空间的5%是ALU,而GPU空间的40%是ALU。这也是导致GPU计算能力超强的原因。

图2 cpu和gpu硬件逻辑结构对比
那有人讲了,为什么cpu不像gpu那样设计呢,这样计算能力也强悍了!
为什么?CPU要做得很通用。CPU需要同时很好的支持并行和串行操作,需要很强的通用性来处理各种不同的数据类型,同时又要支持复杂通用的逻辑判断,这样会引入大量的分支跳转和中断的处理。这些都使得CPU的内部结构异常复杂,计算单元的比重被降低了。而GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境。因此GPU的芯片比CPU芯片简单很多。
举个例子,假设有一堆相同的加减乘除计算任务需要处理,那把这个任务交给一堆(几十个)小学生就可以了,这里小学生类似于GPU的计算单元,而对一些复杂的逻辑推理等问题,比如公式推导、科技文章写作等高度逻辑化的任务,交给小学生显然不合适,这时大学教授更适合,这里的大学教授就是CPU的计算单元了,大学教授当然能处理加减乘除的问题,单个教授计算加减乘除比单个小学生计算速度更快,但是成本显然高很多。
3 GPU编程库
GPU计算能力这么强,被广泛使用!比如挖矿(比特币)、图形图像处理、数值模拟、机器学习算法训练等等,那我们怎么发挥GPU超强的计算能力呢?---编程!
怎么进行GPU编程呢?现在GPU形形色色,比如Nvidia、AMD、Intel都推出了自己的GPU,其中最为流行的就是Nvidia的GPU,其还推出了CUDA并行编程库。然而每个GPU生产公司都推出自己的编程库显然让学习成本上升很多,因此苹果公司就推出了标准OpenCL,说各个生产商都支持我的标准,只要有一套OpenCL的编程库就能对各类型的GPU芯片适用。当然了,OpenCL做到通用不是没有代价的,会带来一定程度的性能损失,在Nvidia的GPU上,CUDA性能明显比OpenCL高出一大截。目前CUDA和OpenCL是最主流的两个GPU编程库。
从编程语言角度看,CUDA和OpenCL都是原生支持C/C++的,其它语言想要访问还有些麻烦,比如Java,需要通过JNI来访问CUDA或者OpenCL。基于JNI,现今有各种Java版本的GPU编程库,比如JCUDA等。另一种思路就是语言还是由java来编写,通过一种工具将java转换成C。

图3 GPU编程库
4 CUDA程序流程

图4 CUDA程序流程
5 实践---以图像处理为例
假设我们有如下图像处理任务,给每个像素值加1。并行方式很简单,为每个像素开一个GPU线程,由其进行加1操作。

图5 例子

图6 核函数

图7 主流程函数
6 GPU加速效果
下图是我实现的基于CUDA的P&D DEM图像预处理算法使用GPU的加速效果,GeForce GT 330是块普通台式机上的显卡,现在价格也就500人民币左右,用它达到了20倍的加速比,Tesla M2075是比较专业的显卡,价格一万左右,用它达到了将近百倍的加速比,这个程序i7 CPU单进程单线程要跑2个小时,而用Tesla M2075 GPU只花了一分多钟就完成计算。

图8 P&D DEM图像预处理算法加速效果
【并行计算-CUDA开发】GPU---并行计算利器的更多相关文章
- 【并行计算-CUDA开发】GPU 的硬体架构
GPU 的硬体架构 这里我们会简单介绍,NVIDIA 目前支援CUDA 的GPU,其在执行CUDA 程式的部份(基本上就是其shader 单元)的架构.这里的资料是综合NVIDIA 所公布的资讯, ...
- 【并行计算-CUDA开发】【视频开发】ffmpeg Nvidia硬件加速总结
2017年5月25日 0. 概述 FFmpeg可通过Nvidia的GPU进行加速,其中高层接口是通过Video Codec SDK来实现GPU资源的调用.Video Codec SDK包含完整的的高性 ...
- 【并行计算-CUDA开发】CUDA编程——GPU架构,由sp,sm,thread,block,grid,warp说起
掌握部分硬件知识,有助于程序员编写更好的CUDA程序,提升CUDA程序性能,本文目的是理清sp,sm,thread,block,grid,warp之间的关系.由于作者能力有限,难免有疏漏,恳请读者批评 ...
- 【并行计算-CUDA开发】GPU并行编程方法
转载自:http://blog.sina.com.cn/s/blog_a43b3cf2010157ph.html 编写利用GPU加速的并行程序有多种方法,归纳起来有三种: 1. 利用现有的G ...
- 【并行计算-CUDA开发】浅谈GPU并行计算新趋势
随着GPU的可编程性不断增强,GPU的应用能力已经远远超出了图形渲染任务,利用GPU完成通用计算的研究逐渐活跃起来,将GPU用于图形渲染以外领域的计算成为GPGPU(General Purpose c ...
- 【并行计算-CUDA开发】从零开始学习OpenCL开发(一)架构
多谢大家关注 转载本文请注明:http://blog.csdn.net/leonwei/article/details/8880012 本文将作为我<从零开始做OpenCL开发>系列文章的 ...
- 【并行计算-CUDA开发】 NVIDIA Jetson TX1
概述 NVIDIA Jetson TX1是计算机视觉系统的SoM(system-on-module)解决方案.它组合了最新的NVIDIAMaxwell GPU架构,其具有ARM Cortex-A57 ...
- 【并行计算-CUDA开发】CUDA线程、线程块、线程束、流多处理器、流处理器、网格概念的深入理解
GPU的硬件结构,也不是具体的硬件结构,就是与CUDA相关的几个概念:thread,block,grid,warp,sp,sm. sp: 最基本的处理单元,streaming processor 最 ...
- 【并行计算-CUDA开发】OpenCL、OpenGL和DirectX三者的区别
什么是OpenCL? OpenCL全称Open Computing Language,是第一个面向异构系统通用目的并行编程的开放式.免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计算服务器 ...
随机推荐
- 立即执行函数与For. . .in语句
㈠立即执行函数 ⑴定义:在函数定义完,立即被调用,这样的函数叫做立即执行函数 ⑵语法:函数对象() ⑶注意:立即执行函数往往只会执行一次 ⑷示例1: (function(){ alert(" ...
- Comet OJ - Contest #11 D isaster 重构树+倍增+dfs序+线段树
发现对于任意一条边,起决定性作用的是节点编号更大的点. 于是,对于每一条边,按照节点编号较大值作为边权,按照最小生成树的方式插入即可. 最后用线段树维护 dfs 序做一个区间查询即可. Code: # ...
- JS学习-01
01
- JavaWeb_(Spring框架)在Struts+Hibernate框架中引入Spring框架
spring的功能:简单来说就是帮我们new对象,什么时候new对象好,什么时候销毁对象. 在MySQL中添加spring数据库,添加user表,并添加一条用户数据 使用struts + hibern ...
- [CSP-S2019]:赛后总结
笔者有幸参加了$CSP-S\ 2019$,$AFO$之前,写下自己最后一篇赛后总结. $Day\ 0$ 早上起来把自己调了一晚上被卡空间的题卡过了,很开心(内存限制$256MB$,然而我的内存申请是$ ...
- mitmproxy修改二级代理
第一步 mitmweb --mode upstream:http://114.240.101.242:5672 -s server.py 第二步 def request(self, flow: mit ...
- No suitable constructor was found in NUnit Parameterised tests
No suitable constructor was found in NUnit Parameterised tests Fairly obvious, but can also happen i ...
- react-hook设定定时器的方法
const useInterval = (callback, delay) => { const savedCallback = useRef(); // 保存新回调 useEffect(() ...
- hadoop-job(mapReducer计算单词出现的个数)
1.============map=============== package com.it18zhang.hadoop.mr; import org.apache.hadoop.io.IntWri ...
- PhoneUtils
import java.util.regex.Matcher; import java.util.regex.Pattern; public class PhoneUtils { /** * @par ...