【LOJ #3144】「APIO 2019」奇怪装置
题意:
定义将一个\(t\)如下转换成一个二元组:
\begin{cases}
x = (t + \left\lfloor \frac{t}{B} \right \rfloor) \bmod A\\
y = t \bmod b
\end{cases}
\]
询问\([l_i, r_i]\)之间的\(t_i\)能够转换成多少个本质不同的二元组。
思路:
考虑\((x_1, y_1)\)和\((x_2, y_2)\)相同的时候:
t_1 + \left\lfloor \frac{t_1}{B} \right\rfloor &\equiv& t_2 + \left \lfloor \frac{t_2}{B} \right\rfloor \bmod A \\
t_1 &\equiv& t_2 \bmod B
\end{cases}
\]
我们不妨令\(t_1 = t_2 + kB\),代入第一个式子有:
t_2 + kB + \left\lfloor \frac{t_2 + kB}{B} \right \rfloor \equiv t_2 + \left \lfloor \frac{t_2}{B} \right \rfloor \bmod A
\end{eqnarray*}
\]
化简之后有:
k(B + 1) \equiv 0 \bmod A
\end{eqnarray*}
\]
所以有\(A\;|\;k(B + 1)\),继而有\(\frac{A}{gcd(A, B + 1)}\;|\;k\),令\(g = \frac{A}{gcd(A, B + 1)}\),那么有\(g\;|\;k\)。
所以\(k\)要满足是\(g\)的倍数上述条件才成立,而\(t_1\)模\(B\)的个数是\(B\)个,所以循环节长度为\(T = gB\)。
将区间取模之后变成一条条线段,差分得到\([0, T)\)的覆盖区间长度即为答案。
代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 1000010
#define pll pair <ll, ll>
#define fi first
#define se second
int n;
ll l[N], r[N];
ll A, B;
ll gcd(ll a, ll b) {
return b ? gcd(b, a % b) : a;
}
multiset <pll> se;
void add(ll l, ll r) {
se.insert(pll(l, 1));
se.insert(pll(r + 1, -1));
}
int main() {
while (scanf("%d%lld%lld", &n, &A, &B) != EOF) {
se.clear();
ll sum = 0;
for (int i = 1; i <= n; ++i) {
scanf("%lld%lld", l + i, r + i);
sum += r[i] - l[i] + 1;
}
ll g = gcd(A, B + 1);
if (1.0 * A * B / g > 1e18) {
printf("%lld\n", sum);
continue;
}
ll T = A / g * B;
for (int i = 1; i <= n; ++i) {
if (r[i] - l[i] + 1 >= T) {
printf("%lld\n", T);
return 0;
}
l[i] %= T;
r[i] %= T;
if (l[i] > r[i]) {
add(l[i], T - 1);
add(0, r[i]);
} else {
add(l[i], r[i]);
}
}
ll base = 0, lst = -1, res = 0;
for (auto it : se) {
if (base > 0) res += it.fi - lst;
base += it.se;
lst = it.fi;
}
printf("%lld\n", res);
}
return 0;
}
【LOJ #3144】「APIO 2019」奇怪装置的更多相关文章
- #3144. 「APIO 2019」奇怪装置
#3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...
- 「APIO 2019」奇怪装置
题目 考虑推柿子 最开始的想法是如果两个\(t\)在\(mod\ B\)意义下相等,那么只需要比较一下\((t+\left \lfloor \frac{t}{B}\rfloor \right)mod\ ...
- LOJ#3054. 「HNOI 2019」鱼
LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想 ...
- #3146. 「APIO 2019」路灯
#3146. 「APIO 2019」路灯 题目描述 一辆自动驾驶的出租车正在 Innopolis 的街道上行驶.该街道上有 \(n + 1\) 个停车站点,它们将街道划分成了 \(n\) 条路段.每一 ...
- #3145. 「APIO 2019」桥梁
#3145. 「APIO 2019」桥梁 题目描述 圣彼得堡市内所有水路长度总和约 282 千米,市内水域面积占城市面积的 7%.--来自维基百科 圣彼得堡位于由 \(m\) 座桥梁连接而成的 \(n ...
- 「APIO 2019」桥梁
题目 三天终于把\(APIO\)做完了 这题还是比较厉害的,如果不知道这是个分块应该就自闭了 考虑一个非常妙的操作,按照操作分块 我们设一个闸值\(S\),把\(S\)个边权修改操作分成一块,把所有的 ...
- 「APIO 2019」路灯
题目 显然一个熟练的选手应该能一眼看出我们需要维护点对的答案 显然在断开或连上某一条边的时候只会对左右两边联通的点产生贡献,这个拿\(set\)维护一下就好了 那现在的问题就是怎么维护了 考虑一个非常 ...
- Loj #2495. 「AHOI / HNOI2018」转盘
Loj #2495. 「AHOI / HNOI2018」转盘 题目描述 一次小 G 和小 H 原本准备去聚餐,但由于太麻烦了于是题面简化如下: 一个转盘上有摆成一圈的 \(n\) 个物品(编号 \(1 ...
- Loj #2494. 「AHOI / HNOI2018」寻宝游戏
Loj #2494. 「AHOI / HNOI2018」寻宝游戏 题目描述 某大学每年都会有一次 Mystery Hunt 的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得 ...
随机推荐
- 使用Docker搭建svn服务器教程
svn简介 SVN是Subversion的简称,是一个开放源代码的版本控制系统,相较于RCS.CVS,它采用了分支管理系统,它的设计目标就是取代CVS.互联网上很多版本控制服务已从CVS迁移到Subv ...
- Hi3531a海思logo加载的实现流程
海思篇之开机logo的加载(Hi3531a命令版) 2019-02-02 11:31:51 Wilburn0 阅读数 479更多 分类专栏: 海思开发 版权声明:本文为博主原创文章,遵循CC 4. ...
- Code First 下自动更新数据库结构(Automatic Migrations)
示例 Web.config <?xml version="1.0" encoding="utf-8"?> <configuration> ...
- C#使用管理员权限打开cmd执行命令行
最近遇到个棘手的问题,服务器远程连不上,但是ftp可以,可能远程连接的服务挂了或者防火墙入站规则有点问题,想要重启,得找机房工作人员,还是挺麻烦的 想了想可以上传个执行cmd命令的东西,然后远程访问触 ...
- javascript 之 call,apply原理
一.call原理 1.使用JQuery的call功能 var add(c,d){ return this.a+this.b+c+d } var obj={a:1,b:2} add.Call(obj,3 ...
- javascript获取url参数的方式
方式一: 推荐使用此方式: url链接为:newsDetail.html?id=8a8080e35f90d9fd015f90dac7750001&modelId=123456 var URL ...
- S5PV210 启动流程
S3C6410启动流程 首先,看一下S3C6410启动流程 ① iROM supports initial boot up : initialize system clock, D-TCM, devi ...
- 本文可能是国内第一篇介绍C/4HANA Foundation的中文博客
SAP C/4HANA从去年发布已经过去了一年多的时间,C/4HANA的从业者,对于这五朵云里包含的产品集,想必都有了一些了解. Jerry注意到,SAP C/4HANA Foundation这个概念 ...
- Linux日志查看
Linux日志查看: 1.Last -a 把从何处登入系统的主机名称或IP地址,显示在最后一行.-d 指定记录文件.指定记录文件.将IP地址转换成主机名称.-f <记录文件> 指定记录文 ...
- log4j托管tomcat日志
由于项目中 Tomcat 日志越来越大,对于日志查找非常不方便,所以经过一番调查可以通过log4j来托管 Tomcat 日志的方式,实现Tomcat日志切片.这里只说明怎么是log4j托管Tomcat ...