【LOJ #3144】「APIO 2019」奇怪装置
题意:
定义将一个\(t\)如下转换成一个二元组:
\begin{cases}
x = (t + \left\lfloor \frac{t}{B} \right \rfloor) \bmod A\\
y = t \bmod b
\end{cases}
\]
询问\([l_i, r_i]\)之间的\(t_i\)能够转换成多少个本质不同的二元组。
思路:
考虑\((x_1, y_1)\)和\((x_2, y_2)\)相同的时候:
t_1 + \left\lfloor \frac{t_1}{B} \right\rfloor &\equiv& t_2 + \left \lfloor \frac{t_2}{B} \right\rfloor \bmod A \\
t_1 &\equiv& t_2 \bmod B
\end{cases}
\]
我们不妨令\(t_1 = t_2 + kB\),代入第一个式子有:
t_2 + kB + \left\lfloor \frac{t_2 + kB}{B} \right \rfloor \equiv t_2 + \left \lfloor \frac{t_2}{B} \right \rfloor \bmod A
\end{eqnarray*}
\]
化简之后有:
k(B + 1) \equiv 0 \bmod A
\end{eqnarray*}
\]
所以有\(A\;|\;k(B + 1)\),继而有\(\frac{A}{gcd(A, B + 1)}\;|\;k\),令\(g = \frac{A}{gcd(A, B + 1)}\),那么有\(g\;|\;k\)。
所以\(k\)要满足是\(g\)的倍数上述条件才成立,而\(t_1\)模\(B\)的个数是\(B\)个,所以循环节长度为\(T = gB\)。
将区间取模之后变成一条条线段,差分得到\([0, T)\)的覆盖区间长度即为答案。
代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 1000010
#define pll pair <ll, ll>
#define fi first
#define se second
int n;
ll l[N], r[N];
ll A, B;
ll gcd(ll a, ll b) {
return b ? gcd(b, a % b) : a;
}
multiset <pll> se;
void add(ll l, ll r) {
se.insert(pll(l, 1));
se.insert(pll(r + 1, -1));
}
int main() {
while (scanf("%d%lld%lld", &n, &A, &B) != EOF) {
se.clear();
ll sum = 0;
for (int i = 1; i <= n; ++i) {
scanf("%lld%lld", l + i, r + i);
sum += r[i] - l[i] + 1;
}
ll g = gcd(A, B + 1);
if (1.0 * A * B / g > 1e18) {
printf("%lld\n", sum);
continue;
}
ll T = A / g * B;
for (int i = 1; i <= n; ++i) {
if (r[i] - l[i] + 1 >= T) {
printf("%lld\n", T);
return 0;
}
l[i] %= T;
r[i] %= T;
if (l[i] > r[i]) {
add(l[i], T - 1);
add(0, r[i]);
} else {
add(l[i], r[i]);
}
}
ll base = 0, lst = -1, res = 0;
for (auto it : se) {
if (base > 0) res += it.fi - lst;
base += it.se;
lst = it.fi;
}
printf("%lld\n", res);
}
return 0;
}
【LOJ #3144】「APIO 2019」奇怪装置的更多相关文章
- #3144. 「APIO 2019」奇怪装置
#3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...
- 「APIO 2019」奇怪装置
题目 考虑推柿子 最开始的想法是如果两个\(t\)在\(mod\ B\)意义下相等,那么只需要比较一下\((t+\left \lfloor \frac{t}{B}\rfloor \right)mod\ ...
- LOJ#3054. 「HNOI 2019」鱼
LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想 ...
- #3146. 「APIO 2019」路灯
#3146. 「APIO 2019」路灯 题目描述 一辆自动驾驶的出租车正在 Innopolis 的街道上行驶.该街道上有 \(n + 1\) 个停车站点,它们将街道划分成了 \(n\) 条路段.每一 ...
- #3145. 「APIO 2019」桥梁
#3145. 「APIO 2019」桥梁 题目描述 圣彼得堡市内所有水路长度总和约 282 千米,市内水域面积占城市面积的 7%.--来自维基百科 圣彼得堡位于由 \(m\) 座桥梁连接而成的 \(n ...
- 「APIO 2019」桥梁
题目 三天终于把\(APIO\)做完了 这题还是比较厉害的,如果不知道这是个分块应该就自闭了 考虑一个非常妙的操作,按照操作分块 我们设一个闸值\(S\),把\(S\)个边权修改操作分成一块,把所有的 ...
- 「APIO 2019」路灯
题目 显然一个熟练的选手应该能一眼看出我们需要维护点对的答案 显然在断开或连上某一条边的时候只会对左右两边联通的点产生贡献,这个拿\(set\)维护一下就好了 那现在的问题就是怎么维护了 考虑一个非常 ...
- Loj #2495. 「AHOI / HNOI2018」转盘
Loj #2495. 「AHOI / HNOI2018」转盘 题目描述 一次小 G 和小 H 原本准备去聚餐,但由于太麻烦了于是题面简化如下: 一个转盘上有摆成一圈的 \(n\) 个物品(编号 \(1 ...
- Loj #2494. 「AHOI / HNOI2018」寻宝游戏
Loj #2494. 「AHOI / HNOI2018」寻宝游戏 题目描述 某大学每年都会有一次 Mystery Hunt 的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得 ...
随机推荐
- docker 实践五:端口映射和容器互联
本篇是关于 docker 容器的端口映射和容器之间的互联内容. 注:环境为 CentOS7,docker 19.03. docker 的容器除了能连接网络外,在许多时候,我们需要让多个容器来协同完成任 ...
- Android--文件存取
import java.io.ByteArrayOutputStream; import java.io.FileInputStream; import java.io.FileNotFoundExc ...
- Android SDK版本号 与 API Level 对应关系 201911
API是开发用的,所以API LEVEL可以认为是内部的:而SDK的版本提供了新特性给用户,是外部可见的. 可以查看以下网址以获取最新的对应关系: http://developer.android. ...
- java 爬虫:开源java爬虫 swing工具 Imgraber
1实现点: 1.返回给定URL网页内,所有图像url list 2.返回给定URL网页内,自动生成图像文件路径.txt 文件 3.返回给定URL网页内,下载txt文件指定的图片url,并将所有图像保存 ...
- Java集合源码阅读之HashMap
基于jdk1.8的HashMap源码分析. 引用于:http://blog.stormma.me/2017/05/31/Java%E9%9B%86%E5%90%88%E6%BA%90%E7%A0%81 ...
- phpcms企业站的一些知识
头header.html 尾footer.html 主页用index.html 列表页用list.html 单网页用page.html 内容页用show.html {template "co ...
- CentOS7安装CDH 第十三章:CDH资源池配置
相关文章链接 CentOS7安装CDH 第一章:CentOS7系统安装 CentOS7安装CDH 第二章:CentOS7各个软件安装和启动 CentOS7安装CDH 第三章:CDH中的问题和解决方法 ...
- jQuery dataTable 表格插件的后台分页与界面展示
效果: html部分: {include file="Public:inner_header" /} <nav class="breadcrumb"> ...
- Python基础——运行机理
Python解释器 从Python这门编程语言的实现上来讲,Python是一个名为解释器的软件包,包含:一个解释器 和 支持的库 解释器又有不同版本:CPython.Jython.IronPython ...
- Linux的进程管理基本指令
在Linux操作系统中,进程是指一个程序的运行实例,它需要存储器来存储程序本身及其操作数据.内核负责创建和跟踪进程.当程序运行时,内核首先准备好一些内存,将可执行代码从文件系统加载到内存里,然后开始运 ...