Luogu P1066 2^k进制数 组合数学
分两种情况:$k|n$和$k$不整除$n$
如果$k|n$,那么长度为$n$的二进制数就能被恰好分成$n/k$个块;所以若某个数长度是$x$个块,由于每个块内能填不同的$2^k-1$个数,那么就有$C_{2^k-1}^{x}$
所以整除时答案是$\sum_{i=2}^{n/k} \space C_{2^k-1}^{i}$
如果$k$不整除$n$,那么一共会分成$\lfloor \frac{n}{k} \rfloor+1$块,而最后一个不完整的块只有$n\text{mod} k$位,能选择的数还是$0$到$2^{n\text{ } \text{mod} \text{ }k}-1$
如果这个最高位选择填$0$那么回到了$k|n$的情况,所以最高位填0的方案数为$\sum_{i=2}^{\left \lfloor\frac{n}{k}\right \rfloor} C_{2^k-1}^{i}$
之后最高位还可以填$1$到$2^{n\text{ } \text{mod} \text{ }k}-1$,如果我们选择填$i$的话,那么后面的块内要填比$i$大的数,所以剩下的每个块内可以填的就有$2^k-1-i$个数,所以方案数就是$C_{2^k-1-i}^{\left \lfloor\frac{n}{k}\right \rfloor}$
所以最后的答案还应该加上$\sum_{i=1}^{2^{n\text{ } \text{mod} \text{ }k} \space \space \space -1} \space C_{2^k-1-i}^{\left \lfloor\frac{n}{k}\right \rfloor}$
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<vector>
#include<map>
#include<set>
#define ll long long
#define R register int
static char B[<<],*S=B,*D=B;
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
using namespace std;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} short c[]; int n,k,p,res,t;
inline string add(string a,string b) {
R lena=a.size(),lenb=b.size(); reverse(a.begin(),a.end()),reverse(b.begin(),b.end()); memset(c,,sizeof(c));
R p=; for(;p<max(lena,lenb)||c[p];++p) c[p]+=(int)(p<lena?:)*(a[p]-)+(int)(p<lenb?:)*(b[p]-),c[p+]+=c[p]/,c[p]%=;
string ret="\0"; for(R i=p-;~i;--i) ret.insert(ret.end(),char(c[i]+));
reverse(a.begin(),a.end()),reverse(b.begin(),b.end()); return ret;
}
string ans;
string C[][];
signed main() {
k=g(),n=g(),p=n/k,res=n%k;
t=(<<k)-,C[][]="";
for(R i=;i<=t;++i) { C[i][]="";
for(R j=;j<i;++j) C[i][j]=add(C[i-][j],C[i-][j-]); C[i][i]="";
} for(R i=;i<=p;++i) {
if(i>t) break; ans=add(ans,C[t][i]);
} R lim=(<<res)-;
for(R i=;i<=lim;++i) {
if(p>t-i) break; ans=add(ans,C[t-i][p]);
} cout<<ans<<endl;
}
2019.06.05
Luogu P1066 2^k进制数 组合数学的更多相关文章
- [luogu]P1066 2^k进制数[数学][递推][高精度]
[luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...
- [Luogu P1066] 2^k进制数 (组合数或DP)
题面 传送门:https://www.luogu.org/problemnew/show/P1066 Solution 这是一道神奇的题目,我们有两种方法来处理这个问题,一种是DP,一种是组合数. 这 ...
- 洛谷 P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- 洛谷P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- 洛谷P1066 2^k进制数(题解)(递推版)
https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P106 ...
- P1066 2^k进制数
传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...
- [NOIP2006] 提高组 洛谷P1066 2^k进制数
题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后 ...
- 【洛谷p1066】2^k进制数
(不会敲键盘惹qwq) 2^k进制数[传送门] 算法标签: (又是一个提高+省选-的题) 如果我说我没听懂你信吗 代码qwq: #include<iostream> #include< ...
- 蓝桥杯 问题 1110: 2^k进制数 (排列组合+高精度巧妙处理)
题目链接 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2 ...
随机推荐
- Educational Codeforces Round 74 (Rated for Div. 2)补题
慢慢来. 题目册 题目 A B C D E F G 状态 √ √ √ √ × ∅ ∅ //√,×,∅ 想法 A. Prime Subtraction res tp A 题意:给定\(x,y(x> ...
- 剑指offer32:把数组排成最小的数
1 题目描述 输入一个正整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个.例如输入数组{3,32,321},则打印出这三个数字能排成的最小数字为321323. 2 思路 ...
- NOIP2012 DAY1 T2 国王游戏
题目描述 恰逢 H国国庆,国王邀请n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排成一排,国王站在队伍的最前面 ...
- python以不同方式打印输出九九乘法表
参考:http://www.cnblogs.com/suiy-160428/p/5594389.htmlpython输出 9*9 乘法口诀表 矩形输出九九乘法表: for i in range(1,1 ...
- Redis获得bigkey扫描脚本
众所周知,redis里面的大key存在是非常危险的一件事情.因为最近的工作转移到中间件相关的工作,因此关注了一下bigkey的扫描方法.首先介绍一下阿里云提供的扫描脚本:具体可见:https://yq ...
- faceswap深度学习AI实现视频换脸详解
给大家介绍最近超级火的黑科技应用deepfake,这是一个实现图片和视频换脸的app.前段时间神奇女侠加尔盖朵的脸被换到了爱情动作片上,233333.我们这里将会从github项目faceswap开始 ...
- JS 控制特殊字符
1.标签上直接替换方法: JS 控制不能输入特殊字符 1 <input type="text"class="domain"onkeyup="th ...
- Markdown: Syntax Text
Markdown: Syntax Text https://daringfireball.net/projects/markdown/syntax.text Markdown: Syntax ==== ...
- linux--查看磁盘空间大小使用情况
1. linux查看磁盘空间大小命令 df -h Df命令是linux系统以磁盘分区为单位查看文件系统,可以加上参数查看磁盘剩余空间信息, 命令格式: df -hl 显示格式为: 文件系统 容量 ...
- 验证组件FluentValidation的使用示例
官方文档:https://fluentvalidation.net/start#complex-properties 示例Demo:https://github.com/DavideYang125/F ...