BZOJ4816 Sdoi2017数字表格
一开始只推出O(TN)的做法,后来看了看发现再推一步就好了。
我们只需要枚举gcd就可以啦。

然后我们改变一下枚举顺序
设T为dk

预处理中间那部分前缀积就好了。
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+,mod=1e9+;
int n,m,p[N/],miu[N],g[N],f[N],inv[N],cnt;bool v[N];
typedef long long ll;
int qmod(int x,ll y)
{
int ans=;
while(y)
{
if(y&)ans=1ll*ans*x%mod;
x=1ll*x*x%mod;y>>=;
}
return ans;
}
void init()
{
miu[]=;
for(int i=;i<=1e6;++i)
{
if(!v[i])
{
p[++cnt]=i;miu[i]=-;
}
for(int j=;j<=cnt&&i*p[j]<=1e6;++j)
{
v[i*p[j]]=;
if(i%p[j]==)break;
miu[i*p[j]]=-miu[i];
}
}
for(int i=;i<=1e6;++i)g[i]=;
f[]=;f[]=g[]=;
for(int i=;i<=1e6;++i)f[i]=(f[i-]+f[i-])%mod;
for(int i=;i<=1e6;++i)
{
inv[i]=qmod(f[i],mod-);
for(int j=i,k=;j<=1e6;j+=i,k++)
if(miu[k])
{
if(miu[k]==-)
g[j]=1ll*g[j]*inv[i]%mod;
else
g[j]=1ll*g[j]*f[i]%mod;
}
g[i]=1ll*g[i]*g[i-]%mod;
}
return;
}
int main()
{
init();int T;
scanf("%d",&T);
for(int k=;k<=T;++k)
{
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);int ans=;
for(int i=,j;i<=n;i=j+)
{
j=min(n/(n/i),m/(m/i));
ans=1ll*ans*qmod(1ll*g[j]*qmod(g[i-],mod-)%mod,1ll*(n/i)*(m/i))%mod;
}
printf("%d\n",(ans+mod)%mod);
}
return ;
}
BZOJ4816 Sdoi2017数字表格的更多相关文章
- bzoj4816 [Sdoi2017]数字表格
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...
- BZOJ4816 [Sdoi2017]数字表格 数论 莫比乌斯反演
原文链接http://www.cnblogs.com/zhouzhendong/p/8666106.html 题目传送门 - BZOJ4816 题意 定义$f(0)=0,f(1)=1,f(i)=f(i ...
- BZOJ4816 [Sdoi2017]数字表格 【莫比乌斯反演】
题目 Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生成了 ...
- BZOJ4816 SDOI2017 数字表格 莫比乌斯反演
传送门 做莫比乌斯反演题显著提高了我的\(\LaTeX\)水平 推式子(默认\(N \leq M\),分数下取整,会省略大部分过程) \(\begin{align*} \prod\limits_{i= ...
- [bzoj4816][Sdoi2017]数字表格 (反演+逆元)
(真不想做莫比乌斯了) 首先根据题意写出式子 ∏(i=1~n)∏(j=1~m)f[gcd(i,j)] 很明显的f可以预处理出来,解决 根据套路分析,我们可以先枚举gcd(i,j)==d ∏(d=1~n ...
- BZOJ:4816: [Sdoi2017]数字表格
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 501 Solved: 222[Submit][Status ...
- [Sdoi2017]数字表格 [莫比乌斯反演]
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...
- 【BZOJ4816】数字表格(莫比乌斯反演)
[BZOJ4816]数字表格(莫比乌斯反演) 题面 BZOJ 求 \[\prod_{i=1}^n\prod_{j=1}^mf[gcd(i,j)]\] 题解 忽然不知道这个要怎么表示... 就写成这样吧 ...
- 【BZOJ 4816】 4816: [Sdoi2017]数字表格 (莫比乌斯)
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 666 Solved: 312 Description Do ...
随机推荐
- 质数——1到n遍历法
一.从1至N全部遍历,当这个数只能被1和n整除它就是素数. /** * 打印自然数n以内的素数 */ public void printPrime(int n){ //是否为质数 boolean is ...
- 35个java代码性能优化总结
前言 代码优化,一个很重要的课题.可能有些人觉得没用,一些细小的地方有什么好修改的,改与不改对于代码的运行效率有什么影响呢?这个问题我是这么考虑 的,就像大海里面的鲸鱼一样,它吃一条小虾米有用吗?没用 ...
- MySQL异步复制延迟解决
http://www.ttlsa.com/mysql/mysql-5-7-enhanced-multi-thread-salve/
- Jad查看源码
需要者两个文件:下载地址:http://pan.baidu.com/s/11qq4I 1,解压jar包 有两个文件 分别是net.sf.jadclipse_3.3.0 jad.exe 文件 2,找到m ...
- 20155235 2016-2017-2 《Java程序设计》第8周学习总结
20155235 2016-2017-2 <Java程序设计>第8周学习总结 教材学习内容总结 第十四章 NIO与NIO2 认识NIO NIO概述 Channel架构与操作 Buffer架 ...
- 将本地的mongodb迁移到阿里云
首先在阿里云上安装mongodb,可以根据官方教程 https://docs.mongodb.com/manual/tutorial/install-mongodb-on-amazon/ 完成之后启动 ...
- sql server查询某年某月有多少天
sql语句如下: ),) date from (),,)+'-01' day) t1, ( ) t2 ),) ),,)+'%' 查询结果如下: 2017年2月共有28天,查询出28条记录.
- 05 uni-app框架学习:uni-app设置全局变量的方法
原文地址:https://ask.dcloud.net.cn/article/35021
- [转]OpenMP 入门指南
简介 这门课作为 ECE 中少有的跟计算机科学相关的课,自然是必上不可.不过无论是 OpenMP 还是 CUDA,对于平时极少接触并行编程的我来说,都是十分吃力的,第一次作业的 OpenMP 编程已经 ...
- linux中断申请之request_threaded_irq【转】
转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=21977330&id=3755609 在linux里,中断处理分 ...