【刷题】BZOJ 2935 [Poi1999]原始生物
Description
原始生物的遗传密码是一个自然数的序列K=(a1,...,an)。原始生物的特征是指在遗传密码中连续出现的数对(l,r),即存在自然数i使得l=ai且r=ai+1。在原始生物的遗传密码中不存在(p,p)形式的特征。
求解任务:
请设计一个程序:
·读入一系列的特征。
·计算包含这些特征的最短的遗传密码。
·将结果输出
Input
第一行是一个整数n ,表示特征的总数。在接下来的n行里,每行都是一对由空格分隔的自然数l 和r ,1 <= l,r <= 1000。数对(l, r)是原始生物的特征之一。输入文件中的特征不会有重复。
Output
唯一一行应该包含一个整数,等于包含了PIE.IN中所有特征的遗传密码的最小长度。
Sample Input
12
2 3
3 9
9 6
8 5
5 7
7 6
4 5
5 1
1 4
4 2
2 8
8 6
Sample Output
15
注:
PIE.IN中的所有特征都包含在以下遗传密码中:
(8, 5, 1, 4, 2, 3, 9, 6, 4, 5, 7, 6, 2, 8, 6)
Solution
将限制建成边,于是题目的意思就变成了对于每一个联通块,找一个路径最短的欧拉回路/欧拉路径
欧拉路径还有最短的说法?!不可能的,所以肯定是定值。最短这个含义是体现在加边上的
考虑一个联通块,如果其本身是存在一个欧拉回路,即奇度数点为0,那么贡献就是边数加一
否则,奇度数点一定是大于0的偶数 \(x\),我们要加一些边使得图存在欧拉路径,还要让加的边最少,所以就是找 \(x-2\) 个点,两两连边,使图存在欧拉路径,这样的贡献就是加了边后的边数
最后依次考虑每个联通块就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1000+10;
int n,in[MAXN],out[MAXN],lt,ans,euler[MAXN],cnt,e,beg[MAXN],nex[MAXN*MAXN<<1],to[MAXN*MAXN<<1],vis[MAXN],app[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline void dfs(int x)
{
vis[x]=1;
chkmin(euler[cnt],in[x]==out[x]?1:0);
for(register int i=beg[x];i;i=nex[i])
if(!vis[to[i]])dfs(to[i]);
}
int main()
{
read(n);
for(register int i=1;i<=n;++i)
{
int u,v;read(u);read(v);app[u]=app[v]=1;
in[v]++;out[u]++;
insert(u,v);insert(v,u);
chkmax(lt,u);chkmax(lt,v);
}
for(register int i=1;i<=lt;++i)
if(!vis[i]&&app[i])euler[++cnt]=1,dfs(i);
for(register int i=1;i<=lt;++i)
if(app[i])ans+=max(in[i],out[i]);
for(register int i=1;i<=cnt;++i)ans+=euler[i];
write(ans,'\n');
return 0;
}
【刷题】BZOJ 2935 [Poi1999]原始生物的更多相关文章
- bzoj 2935 [Poi1999]原始生物——欧拉回路思路!
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2935 有向图用最小的路径(==总点数最少)覆盖所有边. 完了完了我居然连1999年的题都做不 ...
- BZOJ 2935/ Poi 1999 原始生物
[bzoj2935][Poi1999]原始生物 2935: [Poi1999]原始生物 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 145 So ...
- 【bzoj2935】[Poi1999]原始生物
2935: [Poi1999]原始生物 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 145 Solved: 71[Submit][Status][D ...
- BZOJ2935: [Poi1999]原始生物(欧拉回路)
2935: [Poi1999]原始生物 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 150 Solved: 71[Submit][Status][D ...
- 【刷题】BZOJ 2407 探险
Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则: ...
- 【刷题】BZOJ 4543 [POI2014]Hotel加强版
Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...
- 【刷题】BZOJ 4316 小C的独立集
Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...
- 【刷题】BZOJ 4176 Lucas的数论
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
- BZOJ第一页刷题计划
BZOJ第一页刷题计划 已完成:67 / 90 [BZOJ1000]A+B Problem:A+B: [BZOJ1001][BeiJing2006]狼抓兔子:最小割: [BZOJ1002][FJOI2 ...
随机推荐
- bash下输入命令的几个常用快捷键
------------------------------------------ 先区分下vi里的命令 快速在行里移动光标 b 是往前部一个单词一个单词的移动 e 是往后部一个单词一个单词的移 ...
- poj 2485 Highways (最小生成树)
链接:poj 2485 题意:输入n个城镇相互之间的距离,输出将n个城镇连通费用最小的方案中修的最长的路的长度 这个也是最小生成树的题,仅仅只是要求的不是最小价值,而是最小生成树中的最大权值.仅仅须要 ...
- Scala_数据类型
Scala与Java有着相同的数据类型,Scala数据类型都是对象,Scala中没有类似Java中那样的原始类型. Scala 的基本数据类型有: Byte,Short,Int,Long 和 Char ...
- 20155204 王昊《网络对抗技术》EXP4
20155204 王昊<网络对抗技术>EXP4 一.实验后回答问题 (1)如果在工作中怀疑一台主机上有恶意代码,但只是猜想,所有想监控下系统一天天的到底在干些什么.请设计下你想监控的操作有 ...
- ElasticSearch入门 第五篇:使用C#查询文档
这是ElasticSearch 2.4 版本系列的第五篇: ElasticSearch入门 第一篇:Windows下安装ElasticSearch ElasticSearch入门 第二篇:集群配置 E ...
- .NetCore实践爬虫系统(二)自定义规则
回顾 上篇文章NetCore实践爬虫系统(一)解析网页内容 我们讲了利用HtmlAgilityPack,输入XPath路径,识别网页节点,获取我们需要的内容.评论中也得到了大家的一些支持与建议.下面继 ...
- Java使用Redis学习笔记
如果我们使用Java操作Redis, 需要确保已经安装了 redis 服务及 Java redis 驱动. Maven项目可以直接在pom.xml中加入jedis包驱动: <dependency ...
- Windows Defender还原误删文件
Win 10 新版本的Windows Defender隔离/删除的文件没有还原的选项,导致被误删的文件无法在威胁记录中恢复.经过尝试发现可以通过修改注册表添加 “还原” 选项 打开注册表,找到 HKE ...
- fiddler之会话数据的修改
fiddler之会话数据的修改 fiddler记录http的请求,并且针对特定的http请求,可以分析请求数据.修改数据.调试web系统等,功能十分强大.本篇主要讲两种修改的数据的方法,断点和Unlo ...
- 接口自动化学习--testNG
一个月一更的节奏~ testNg是一个开源的自动化测试框架..具体那些什么特点的就不想打了- -,贴张图(虽然也看不懂): 学习网站:https://www.yiibai.com/testng 一样是 ...