【刷题】BZOJ 2734 [HNOI2012]集合选数
Description
《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了。
Input
只有一行,其中有一个正整数 n,30%的数据满足 n≤20。
Output
仅包含一个正整数,表示{1, 2,..., n}有多少个满足上述约束条件 的子集。
Sample Input
4
Sample Output
8
【样例解释】
有8 个集合满足要求,分别是空集,{1},{1,4},{2},{2,3},{3},{3,4},{4}。
Solution
考虑构造这样一个矩阵
x & 3x & 9x & 27x & \cdots & \\ \\
2x & 6x & 18x & 54x & \cdots & \\ \\
4x & 12x & 36x & 108x & \cdots & \\ \\
8x & 24x & 72x & 216x & \cdots & \\ \\
\vdots & \vdots & \vdots & \vdots & \ddots &\\
\end{bmatrix}
\]
那么对于一个数 \(x\) ,与它有冲突关系的数就都选出来了,我们只要在矩阵上选数,并且相邻位置不能选到就可以了
这一步就是个状压dp模板题
对于不在同一矩阵的每一种 \(x\) ,都构造一个矩阵,计算答案。这些矩阵之间互不干扰,所以直接乘起来就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=100000+10,Mod=1e9+1;
int n,G[20],cnt,p[MAXN],vis[MAXN];
ll f[20][2000],ans;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline ll qexp(ll a,ll b)
{
ll res=1;
while(b)
{
if(b&1)res=res*a%Mod;
a=a*a%Mod;
b>>=1;
}
return res;
}
inline bool check(int st)
{
return (st&(st<<1))||(st&(st>>1));
}
inline ll solve(ll x)
{
memset(G,0,sizeof(G));
int w=0,h=0;
while(x*qexp(2,w)<=n)++w;
while(x*qexp(3,h)<=n)++h;
for(register int i=1;i<=w;++i)
for(register int j=1;j<=h;++j)
if(qexp(2,i-1)*qexp(3,j-1)*x<=n)vis[qexp(2,i-1)*qexp(3,j-1)*x]=1,G[i]|=(1<<h-j);
cnt=0;
for(register int st=0;st<(1<<h);++st)
if(!check(st))p[++cnt]=st;
memset(f,0,sizeof(f));
for(register int i=1;i<=w;++i)
for(register int j=1;j<=cnt;++j)
if((p[j]|G[i])==G[i])
{
if(i==1)f[i][j]++;
else
for(register int k=1;k<=cnt;++k)
if((p[k]|G[i-1])==G[i-1]&&!(p[j]&p[k]))(f[i][j]+=f[i-1][k])%=Mod;
}
ll res=0;
for(register int i=1;i<=cnt;++i)
if((p[i]|G[w])==G[w])(res+=f[w][i])%=Mod;
return res;
}
int main()
{
read(n);ans=1;
for(register int i=1;i<=n;++i)
if(!vis[i])ans=1ll*ans*solve(i)%Mod;
write(ans,'\n');
return 0;
}
【刷题】BZOJ 2734 [HNOI2012]集合选数的更多相关文章
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- bzoj 2734: [HNOI2012]集合选数
题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...
- BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...
- BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]
传送门 题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 ...
- bzoj 2734 [HNOI2012]集合选数 状压DP+预处理
这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...
- 2734: [HNOI2012]集合选数
2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...
- 2734: [HNOI2012]集合选数 - BZOJ
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- 【BZOJ】2734: [HNOI2012]集合选数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2734 考虑$N=4$的情况: \begin{bmatrix} 1&3 &X ...
- BZOJ_2734_[HNOI2012]集合选数_构造+状压DP
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...
随机推荐
- 【实战】verilog中`define的使用记录
背景: 在最近实战开发中发现:对外部芯片进行初始化时,往往需要定义大量参数. 若直接在module中通过localparam或者parameter进行参数定义的话,会带来两个问题: 1.代码长度增加, ...
- Android漏洞——将Android恶意代码隐藏在图片中
研究人员发现了Android上又一个严重的安全漏洞:将Android恶意代码隐藏在图片中(Hide Android Applications in Images). 在该漏洞向外界公开之前,Googl ...
- 2017-2018-2 20155203《网络对抗技术》 Exp7:网络欺诈防范
1.基础问题回答 (1)通常在什么场景下容易受到DNS spoof攻击 连接无线网络,和恶意攻击者处在同一局域网下. (2)在日常生活工作中如何防范以上两攻击方法 首先决不去点击浏览器都认为不安全的网 ...
- Qt 的线程与事件循环
Qt 的线程与事件循环
- let和const----你所不知道的JavaScript系列(2)
let 众所周知,在ES6之前,声明变量的关键字就只有var.var 声明变量要么是全局的,要么是函数级的,而无法是块级的. var a=1; console.log(a); console.log( ...
- win10+anaconda3+python3.6+opencv3.1.0
最近用windows系统比较多,就想在win10下搞一下深度学习这一方面的研究,那么就需要配置好环境巴拉巴拉的一堆东西.默默记个笔记,正所谓“好记性不如烂笔头”. 1.安装Anaconda 这个是一个 ...
- 自制一个H5图片拖拽、裁剪插件(原生JS)
前言 如今的H5运营活动中,有很多都是让用户拍照或者上传图片,然后对照片加滤镜.加贴纸.评颜值之类的.尤其是一些拍照软件公司的运营活动几乎全部都是这样的. 博主也做过不少,为了省事就封装了一个简单的图 ...
- RN热更新
说白了集成RN业务,就是集成RN离线包,解析并渲染.所以,RN热更新的根本原理就是更换js bundle文件和资源文件,并重新加载,新的内容就完美的展示出来了. 目前市场上出现的3种热更新模式如下:仅 ...
- PAT甲题题解-1038. Recover the Smallest Number (30)-排序/贪心,自定义cmp函数的强大啊!!!
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789138.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- java实验报告一
一.实验内容 1. 使用JDK编译.运行简单的Java程序 2.使用Eclipse 编辑.编译.运行.调试Java程序 二.实验步骤 (一)命令行下Java程序开发 1. 首先双击桌面上的Xface终 ...