题面

传送门:https://www.luogu.org/problemnew/show/P3469


Solution

先跟我大声念:

poi!


然后开始干正事。

首先,我们先把题目中的点分为两类:去除这个点能把图分为几个部分的,去除这个点不影响整个图的连通性的

如下图:

点上的数字表示这个点的搜索序。

我们称这些对连通性有影响的点为割点

先假设我们能求出这些点以及其出去后把图分为几块之后那几块分别的大小。

是不是发现了什么?

对于非割点,答案显然是2*(n-1) (因为它不能影响别的点对连通性,能影响的只是别人到它以及它到别人)

对于割点,它把那几块弄得无法联通,即那几块中不同块的两个点肯定就无法联通了,答案也就是每组块的点的数量互相乘出来,再加上2*(n-1)。

接下来就是如何求割点了。

这时候我们又得请出伟大的Tarjan了。

先回忆一下求强连通分块的做法,我们这里求割点的做法与其类似。

但有以下几点不同:

1.我们在求low的时候不用讨论所连向的点是否在栈中了,因为无向图中没有横插边的说法(但是要记录当前的父亲,防止我们的low直接计算回去)

2.当一个点的某一个孩子的low>=此点的dfn时,说明这个点就是割点。因为孩子的low大于当前节点的dfn,说明它没有办法直接从当前节点回到搜索树搜过的节点。如果当前节点删除了,此孩子将会分割开来)

至于怎么求每个孩子的size........

(我想这个应该不用说了吧)

就是搜的时候加上去就好,如果不清楚的话看一下代码就懂了。

时间复杂度O(n)

完全OjbK


Code

//Luogu P3469 [POI2008]BLO-Blockade
//June,11th,2018
//玄幻割点
#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
long long read()
{
long long x=0,f=1; char c=getchar();
while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}
return x*f;
}
const int N=100000+100;
vector <long long> e[N],nd_size[N];
int n,m;
int dfn[N],low[N],IsGD[N],nd_to,size[N];
void Tarjan(int now,int fa)
{
dfn[now]=low[now]=++nd_to;
size[now]++;
int temp=0;
for(int i=0;i<int(e[now].size());i++)
if(dfn[e[now][i]]==0)
{
Tarjan(e[now][i],now);
size[now]+=size[e[now][i]];
low[now]=min(low[now],low[e[now][i]]);
if(low[e[now][i]]>=dfn[now])
{
temp+=size[e[now][i]];
IsGD[now]=true;
nd_size[now].push_back(size[e[now][i]]);
}
}
else if(e[now][i]!=fa)
low[now]=min(low[now],low[e[now][i]]);
if(IsGD[now]==true and n-temp-1!=0)
nd_size[now].push_back(n-temp-1);
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
{
e[i].reserve(4);
nd_size[i].reserve(4);
}
for(int i=1;i<=m;i++)
{
int s=read(),t=read();
e[s].push_back(t);
e[t].push_back(s);
} Tarjan(1,0); for(int i=1;i<=n;i++)
{
long long ans=2*(n-1);
if(nd_size[i].size()!=0 and nd_size[i].size()!=1)
{
for(int j=0;j<int(nd_size[i].size());j++)
for(int k=j+1;k<int(nd_size[i].size());k++)
ans+=2*nd_size[i][j]*nd_size[i][k];
}
printf("%lld\n",ans);
}
return 0;
}

正解(C++)

[Luogu P3469] [POI2008]BLO-Blockade (割点)的更多相关文章

  1. P3469 [POI2008]BLO-Blockade(Tarjan 割点)

    P3469 [POI2008]BLO-Blockade 题意翻译 在Byteotia有n个城镇. 一些城镇之间由无向边连接. 在城镇外没有十字路口,尽管可能有桥,隧道或者高架公路(反正不考虑这些).每 ...

  2. 割点判断+luogu 3469 POI2008 BLO

    1.根节点,有2棵及以上子树 2.非根节点,有子节点dfn[u]<=low[v] #include <bits/stdc++.h> #define N 1000050 using n ...

  3. BZOJ 1123 && Luogu P3469 [POI2008]BLO-Blockade 割点+乘法原理

    想了半天式子...最后在邓大师的帮助下想出此题....QWQ我还是太菜了 对于一个非割点,ans+=2*(n-1); 对于一个割点,ans+= #include<cstdio> #incl ...

  4. [LUOGU] P3469 [POI2008]BLO-Blockade

    https://www.luogu.org/problemnew/show/P3469 求无向图分别删去每个点后不连通的点对数. 首先,对于任何一个点,它本身删了,就会和剩下的n-1个点不连通,点对是 ...

  5. 【luogu P3469 [POI2008]BLO-Blockade】 题解

    题目链接:https://www.luogu.org/problemnew/show/P3469 #include <cstdio> #include <cstring> #i ...

  6. bzoj1123 [POI2008]BLO——求割点子树相乘

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1123 思路倒是有的,不就是个乘法原理吗,可是不会写...代码能力... 写了一堆麻麻烦烦乱七 ...

  7. BZOJ 1123: [POI2008]BLO 求割点_乘法原理_计数

    Description Byteotia城市有n个 towns m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. 所有towns连通. Input 输入n&l ...

  8. 洛谷 P3469 [POI2008]BLO-Blockade (Tarjan,割点)

    P3469 [POI2008]BLO-Blockade https://www.luogu.org/problem/P3469 题目描述 There are exactly nn towns in B ...

  9. bzoj 1123 [POI2008]BLO Tarjan求割点

    [POI2008]BLO Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1540  Solved: 711[Submit][Status][Discu ...

随机推荐

  1. Java知识系统回顾整理01基础05控制流程01if

    一.if if(表达式1){ 表达式2: } 如果表达式1的值是true, 就执行表达式2 public class HelloWorld { public static void main(Stri ...

  2. Win10系统中文显示乱码怎么解决

    来源:https://jingyan.baidu.com/article/d8072ac4ba20cfec94cefd48.html 简单的说是: 全部设置改为中国而且一定要重启系统,无论时间还是区域 ...

  3. nginx完美支持thinkphp3.2.2(需配置URL_MODEL=>1 pathinfo模式)

    来源:http://www.thinkphp.cn/topic/26657.html 第一步:配置SERVER块 server { listen 80; server_name www.domain. ...

  4. 《Java从入门到失业》第五章:继承与多态(5.8-5.10):多态与Object类

    5.8多态 上面我们了解了向上转型,即一个对象变量可以引用本类及子类的对象实例,这种现象称为多态(polymorphism).多态究竟有什么用呢?我们先学习一个知识点. 5.8.1方法重写 前面我们学 ...

  5. webfunny前端监控开源项目

    前言介绍 如果你是一位前端工程师,那你一定不止一次去解决一些顽固的线上问题,你也曾想方设法复现用户的bug,结果可能都不太理想. 怎样定位前端线上问题,一直以来,都是很头疼的问题,因为它发生于用户的一 ...

  6. 使用docker搭建redis服务器记录

    #mkdir /home/redishome#mkdir /home/redishome/data#chmod -R 777 /home/redishome把redis.conf传到/home/red ...

  7. python数据清洗

    盖帽法 分箱法 简单随机抽和分层抽

  8. 多Y轴图的尝试

    最近的一篇文章中需要绘制多Y轴图形,Excel只能做双Y轴图,又尝试了Origin,SigmaPlot,Igor等软件,手动做起来相当繁琐,批量做更是觉得费劲,干脆尝试在MeteoInfoLab里实现 ...

  9. day31 Pyhton 面向对象的基础 三大特性

    一.内容回顾 封装 1.概念 笔记 2.__名字 在类的外部就不能用了 3.私有化的 不能被子类继承,也不能在其他任何类中调用 三个装饰器方法(装饰类中的方法) 1.不被修饰的  普通方法,会使用对象 ...

  10. centos8使用timedatectl管理时间

    一,centos8中默认使用chronyd来做时间服务 1,查看chronyd服务的状态 [root@blog ~]# systemctl status chronyd ● chronyd.servi ...