生成树计数的问题用矩阵树定理解决。

考虑如何解决去重的问题,也就是如何保证每个公司都修建一条道路。

用容斥来解决,为方便起见,我处理时先将\(n\)减了1。

设\(f(n)\)为用\(n\)个公司,且不考虑每个公司都修建一条道路的要求,生成树的方案数。

应用容斥公式,那么答案\(ans=\sum\limits_{i=1}^n(-1)^{n-i}f(i)\)

那么我们枚举子集,用矩阵树定理计算求解即可。

实现细节看代码吧。

\(code:\)

#include<bits/stdc++.h>
#define maxn 20
#define maxm 410
#define mod 1000000007
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
ll n,all,sum,cnt;
ll a[maxn][maxn];
void add(int x,int y)
{
a[x][x]++,a[y][y]++;
a[x][y]--,a[y][x]--;
}
struct edge
{
int x,y;
};
struct node
{
ll num;
edge e[maxm];
}p[maxn];
ll det()
{
ll ans=1;
for(int i=1;i<=n;++i)
{
for(int j=i+1;j<=n;++j)
{
while(a[j][i])
{
ll d=a[i][i]/a[j][i];
for(int k=i;k<=n;++k)
a[i][k]=((a[i][k]-a[j][k]*d%mod)%mod+mod)%mod;
swap(a[i],a[j]),ans*=-1;
}
}
ans=ans*a[i][i]%mod;
}
return (ans%mod+mod)%mod;
}
int main()
{
read(n),n--,all=1<<n;
for(int i=1;i<=n;++i)
{
read(p[i].num);
for(int j=1;j<=p[i].num;++j)
read(p[i].e[j].x),read(p[i].e[j].y);
}
for(int s=1;s<all;++s)
{
cnt=0;
memset(a,0,sizeof(a));
for(int i=1;i<=n;++i)
{
if(s&(1<<(i-1)))
{
cnt++;
for(int j=1;j<=p[i].num;++j)
add(p[i].e[j].x,p[i].e[j].y);
}
}
sum=((sum+det()*((n-cnt)&1?-1:1))%mod+mod)%mod;
}
printf("%lld",sum);
return 0;
}

题解 洛谷 P4336 【[SHOI2016]黑暗前的幻想乡】的更多相关文章

  1. 洛谷P4336 [SHOI2016]黑暗前的幻想乡 [Matrix-Tree定理,容斥]

    传送门 思路 首先看到生成树计数,想到Matrix-Tree定理. 然而,这题显然是不能Matrix-Tree定理硬上的,因为还有每个公司只能建一条路的限制.这个限制比较恶心,尝试去除它. 怎么除掉它 ...

  2. Solution -「SHOI2016」「洛谷 P4336」黑暗前的幻想乡

    \(\mathcal{Description}\)   link.   有一个 \(n\) 个结点的无向图,给定 \(n-1\) 组边集,求从每组边集选出恰一条边最终构成树的方案树.对 \(10^9+ ...

  3. P4336 [SHOI2016]黑暗前的幻想乡

    P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ ...

  4. 题解 P4336 [SHOI2016]黑暗前的幻想乡

    题解 前置芝士 :矩阵树定理 本题是一道计数题,有两个要求: 建造的公路构成一颗生成树 每条公路由不同的公司建造,每条公路与一个公司一一映射 那么看到这两个要求后,我们很容易想到第一个条件用矩阵树定理 ...

  5. Luogu P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理+容斥原理

    真是菜到爆炸....容斥写反(反正第一次写qwq) 题意:$n-1$个公司,每个公司可以连一些边,求每个边让不同公司连的生成树方案数. 矩阵树定理+容斥原理(注意到$n$不是很大) 枚举公司参与与否的 ...

  6. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

  7. 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理

    [BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...

  8. bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

    bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...

  9. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  10. bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 264[Submit][Sta ...

随机推荐

  1. Day10-微信小程序实战-交友小程序-创建friendList字段实现好友关系(添加好友功能)--内附代码

    回顾:之前我们进行了删除的功能,以及对message消息的增删,下面实现添加好友的功能 我们先在数据库中,在message这个字段的list里面,添加上测试号的id,就是模拟这个两个测试号要加我主号的 ...

  2. 计算机网络之DNS常见攻击

    DNS欺骗 在Internet上存在的DNS服务器有绝大多数都是用bind来架设的,使用的bind版本主要为bind 4.9.5+P1以前版本和bind 8.2.2-P5以前版本.这些bind有个共同 ...

  3. 线性表的顺序存储和链式存储c语言实现

    一.线性表的顺序存储 typedef int ElemType;typedef struct List { ElemType *data;//动态分配 ,需要申请空间 int length; }Lis ...

  4. 部署JUnit

    JUnit的简介和使用:http://blog.csdn.net/luanlouis/article/details/37562165 jar包下载地址:http://www.java2s.com/C ...

  5. CentOS下安装python3环境及pypy环境

    安装前基础环境 1. win7虚拟机CentOS7.6系统 2. 网络环境通过NAT方式 3. 已经配置到yum仓库并系统自带有python2.7 安装前准备 1. python3.6.5源码包:ht ...

  6. 很实用的h5实现名片扫描识功能快速结合市场运营

    功能描述: 点击名片识别按钮,将名片上的个人信息扫描并解析出来显示. 实现步骤: 1.点击第一个页面上的名片识别按钮,调出手机摄像头和相册,让用户进行选择 2.获取照片或者图片的base64数据,传值 ...

  7. css样式大全,完整的Css样式大全(整理)

    CSS样式被称为为“层叠样式表”,是一种网页制作做不可或缺的技术,是用于装饰网页,达到设计效果的一种样式语言,下面将整理一下css常用样式: 字体属性:(font) 大小 {font-size: x- ...

  8. Flask路由中使用正则表达式匹配

    1.说明 由于flask并不支持直接使用正则表达式来匹配路由,我们可以使用werkzeug.routing的BaseConverter来实现 2.代码 from flask import Flask ...

  9. python入门006

    一:可变与不可变类型 可变类型:值改变,id不变,证明改的是原值,证明原值是可以被改变的 不可变类型:值改变,id也变了,证明是产生新的值,压根没有改变原值,证明原值是不可以被修改的 2.验证 2.1 ...

  10. Quartz.Net 任务调度

    基于ASP.NET MVC(C#)和Quartz.Net组件实现的定时执行任务调度 在之前的文章<推荐一个简单.轻量.功能非常强大的C#/ASP.NET定时任务执行管理器组件–FluentSch ...