题解 洛谷 P4336 【[SHOI2016]黑暗前的幻想乡】
生成树计数的问题用矩阵树定理解决。
考虑如何解决去重的问题,也就是如何保证每个公司都修建一条道路。
用容斥来解决,为方便起见,我处理时先将\(n\)减了1。
设\(f(n)\)为用\(n\)个公司,且不考虑每个公司都修建一条道路的要求,生成树的方案数。
应用容斥公式,那么答案\(ans=\sum\limits_{i=1}^n(-1)^{n-i}f(i)\)
那么我们枚举子集,用矩阵树定理计算求解即可。
实现细节看代码吧。
\(code:\)
#include<bits/stdc++.h>
#define maxn 20
#define maxm 410
#define mod 1000000007
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
ll n,all,sum,cnt;
ll a[maxn][maxn];
void add(int x,int y)
{
a[x][x]++,a[y][y]++;
a[x][y]--,a[y][x]--;
}
struct edge
{
int x,y;
};
struct node
{
ll num;
edge e[maxm];
}p[maxn];
ll det()
{
ll ans=1;
for(int i=1;i<=n;++i)
{
for(int j=i+1;j<=n;++j)
{
while(a[j][i])
{
ll d=a[i][i]/a[j][i];
for(int k=i;k<=n;++k)
a[i][k]=((a[i][k]-a[j][k]*d%mod)%mod+mod)%mod;
swap(a[i],a[j]),ans*=-1;
}
}
ans=ans*a[i][i]%mod;
}
return (ans%mod+mod)%mod;
}
int main()
{
read(n),n--,all=1<<n;
for(int i=1;i<=n;++i)
{
read(p[i].num);
for(int j=1;j<=p[i].num;++j)
read(p[i].e[j].x),read(p[i].e[j].y);
}
for(int s=1;s<all;++s)
{
cnt=0;
memset(a,0,sizeof(a));
for(int i=1;i<=n;++i)
{
if(s&(1<<(i-1)))
{
cnt++;
for(int j=1;j<=p[i].num;++j)
add(p[i].e[j].x,p[i].e[j].y);
}
}
sum=((sum+det()*((n-cnt)&1?-1:1))%mod+mod)%mod;
}
printf("%lld",sum);
return 0;
}
题解 洛谷 P4336 【[SHOI2016]黑暗前的幻想乡】的更多相关文章
- 洛谷P4336 [SHOI2016]黑暗前的幻想乡 [Matrix-Tree定理,容斥]
传送门 思路 首先看到生成树计数,想到Matrix-Tree定理. 然而,这题显然是不能Matrix-Tree定理硬上的,因为还有每个公司只能建一条路的限制.这个限制比较恶心,尝试去除它. 怎么除掉它 ...
- Solution -「SHOI2016」「洛谷 P4336」黑暗前的幻想乡
\(\mathcal{Description}\) link. 有一个 \(n\) 个结点的无向图,给定 \(n-1\) 组边集,求从每组边集选出恰一条边最终构成树的方案树.对 \(10^9+ ...
- P4336 [SHOI2016]黑暗前的幻想乡
P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ ...
- 题解 P4336 [SHOI2016]黑暗前的幻想乡
题解 前置芝士 :矩阵树定理 本题是一道计数题,有两个要求: 建造的公路构成一颗生成树 每条公路由不同的公司建造,每条公路与一个公司一一映射 那么看到这两个要求后,我们很容易想到第一个条件用矩阵树定理 ...
- Luogu P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理+容斥原理
真是菜到爆炸....容斥写反(反正第一次写qwq) 题意:$n-1$个公司,每个公司可以连一些边,求每个边让不同公司连的生成树方案数. 矩阵树定理+容斥原理(注意到$n$不是很大) 枚举公司参与与否的 ...
- [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)
这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...
- 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理
[BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...
- bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)
bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 464 Solved: 264[Submit][Sta ...
随机推荐
- SpringBoot 2.0 编程方式配置,不使用默认配置方式
SpringBoot的一般配置是直接使用application.properties或者application.yml,因为SpringBoot会读取.perperties和yml文件来覆盖默认配置: ...
- Redis SDS 深入一点,看到更多!
1.什么是SDS? Redis 自定的字符串存储结构,关于redis,你需要了解的几点!中我们对此有过简要说明. Redis 底层是用C语言编写的,可是在字符存储上,并未使用C原生的String类型, ...
- Spark学习笔记(三)-Spark Streaming
Spark Streaming支持实时数据流的可扩展(scalable).高吞吐(high-throughput).容错(fault-tolerant)的流处理(stream processing). ...
- Java 多线程基础(十一)线程优先级和守护线程
Java 多线程基础(十一)线程优先级和守护线程 一.线程优先级 Java 提供了一个线程调度器来监控程序启动后进去就绪状态的所有线程.线程调度器通过线程的优先级来决定调度哪些线程执行.一般来说,Ja ...
- 平时自己常用的git指令
增删改查 创建标签 $ git tag -a v1.4 -m 'my version 1.4' 用 -a (译注:取 annotated 的首字母)指定标签名字即可 -m 选项则指定了对应的标签说明 ...
- android studio gradle的坑
国产模拟器别国外的好用.非常傻瓜.有人推荐夜神. 之前用geom,下载Android都得半天. 每次做开发前,配置环境都要搞半天.尤其是想快速学习一个技术的话,光装环境都让人放弃了.最近想看一 ...
- MFC线程(二):线程同步临界区CRITICAL SECTION
当多个线程同时使用相同的资源时,由于是并发执行,不能保证先后顺序.所以假如时一个公共变量被几个线程同时使用会造成该变量值的混乱. 下面来举个简单例子. 假如有一个字符数组变量 char g_charA ...
- Redis系列(六):数据结构QuickList(快速列表)源码解析
1.介绍 Redis在3.2版本之前List的底层编码是ZipList和LinkedList实现的 在3.2版本之后,重新引入了QuickList的数据结构,列表的底层都是QuickList实现 当L ...
- 什么是JDK的SPI机制
什么是SPI和API Application Programming Interface (API)? The API is the description of classes/interfaces ...
- css实现1px 像素线条_解决移动端1px线条的显示方式
使用CSS 绘制出 1px 的边框,在移动端上渲染的效果会出现不同,部分手机发现1px 线条变胖了,这篇文章整理2种方式实现1px 像素线条. 1.利用box-shadow + transform & ...