2019CSP-J T4 加工零件
题目描述
凯凯的工厂正在有条不紊地生产一种神奇的零件,神奇的零件的生产过程自然也很神奇。工厂里有 n 位工人,工人们从 1 ∼n 编号。某些工人之间存在双向的零件传送带。保证每两名工人之间最多只存在一条传送带。
如果 x 号工人想生产一个被加工到第 L(L>1) 阶段的零件,则所有与 x 号工人有传送带直接相连的工人,都需要生产一个被加工到第 L - 1 阶段的零件(但 x 号工人自己无需生产第 L - 1 阶段的零件)。
如果 x 号工人想生产一个被加工到第 1 阶段的零件,则所有与 x 号工人有传送带直接相连的工人,都需要为 x 号工人提供一个原材料。
轩轩是 1 号工人。现在给出 q 张工单,第 i 张工单表示编号为 ai 的工人想生产一个第 Li 阶段的零件。轩轩想知道对于每张工单,他是否需要给别人提供原材料。他知道聪明的你一定可以帮他计算出来!
输入格式
第一行三个正整数 n,m 和 q,分别表示工人的数目、传送带的数目和工单的数目。
接下来 m 行,每行两个正整数 u 和 v,表示编号为 u 和 v 的工人之间存在一条零件传输带。保证 u 不等于 v。
接下来 q 行,每行两个正整数 a 和 L,表示编号为 a 的工人想生产一个第 L 阶段的零件。
输出格式
共 q 行,每行一个字符串 Yes 或者 No。如果按照第 i 张工单生产,需要编号为 1 的轩轩提供原材料,则在第 i 行输出 Yes;否则在第 i 行输出 No。注意输出不含引号。
正文开始:
这个题不难看出(我当时死活没看出来)是个奇偶数最短路(瞎起的名字),大体意思就是,一个位置要单数零件,和他相邻单数长度且长度不超过零件等级的位置都要提供原料。(想象2个工人互相给零件,距离原点的距离和原点零件等级跟最后谁做原零件都是有关系的)
我们可以用链式前向星建图,广搜遍历,每到达一个新的点还要判断这次的距离是不是更短,要把距离1号点的奇偶数距离记成最小的。不可以只记有没有,万一1号点做2号零件,你距离1号点100格远,肯定用不到你。对了,广搜有个剪枝,如果这个点的奇偶距离都没变,哪继续求就没意义了,之前肯定进过队列,所以直接抛弃它。
一号点可以和任何一个相邻的点循环给零件,所以一号点距离1号点的初始值是0。(为什么不能是2,又不会制作等级0的零件? 因为要根据1号点距离自己的偶数位置求其他点的奇数位置。)
上一句话有个地方有点重要(任何一个相邻的点),重点不是任何,是相邻的点,我们要特判,如果一号没有相邻的点,输入什么都输出0。上面的初始偶数距离是0也不管用。
可能会奇妙的转圈圈,所以奇偶数的初始值要定义的很大。
差不多就这样,不会链式前向星的同学可以去翻看之前的博客
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
#include<cstring>
using namespace std;
queue<long long>bj;
long long shu=1,a[100005],p,n,m,z1,z2,ji[100005],ou[100005],f;
struct hehe
{
long long w,nxt;
}sz[200005];
void add(long long z1,long long z2)
{
sz[shu].nxt=a[z1];
sz[shu].w=z2;
a[z1]=shu;
shu++;
}
void bfs()
{
bj.push(1);
ou[1]=0;
while(bj.empty()!=true)
{
long long bl=bj.front();
bj.pop();
for(long long i=a[bl];i!=0;i=sz[i].nxt)
{
if(ou[bl]+1<ji[sz[i].w]||ji[bl]+1<ou[sz[i].w])
{
bj.push(sz[i].w);
}
ji[sz[i].w]=min(ji[sz[i].w],ou[bl]+1);
ou[sz[i].w]=min(ou[sz[i].w],ji[bl]+1);
}
}
}
int main()
{
scanf("%lld%lld%lld",&n,&m,&p);
for(long long i=1;i<=100005;i++)
{
ji[i]=99999999;
ou[i]=99999999;
}
for(long long i=0;i<m;i++)
{
scanf("%lld%lld",&z1,&z2);
add(z1,z2);
add(z2,z1);
if(z1==1||z2==1)
{
f=1;
}
}
bfs();
for(long long i=0;i<p;i++)
{
scanf("%lld%lld",&z1,&z2);
if(f!=1)
{
cout<<"No"<<endl;
continue;
}
if(ou[z1]<=z2&&z2%2==0)
{
cout<<"Yes"<<endl;
continue;
}
if(ji[z1]<=z2&z2%2==1)
{
cout<<"Yes"<<endl;
continue;
}
cout<<"No"<<endl;
}
return 0;
}
当时可能傻了吧。
2019CSP-J T4 加工零件的更多相关文章
- P5663 加工零件
P5663 加工零件 题解 暴力搜索 搜索显然会TLE #include<iostream> #include<cstdio> #include<cstdlib> ...
- 洛谷 P5663 加工零件
题目传送门 解题思路: 最暴力的做法: bfs模拟,每次将一个阶段的所有点拿出来,将其所有直连的点都放进队列,知道本阶段结束,最后看1号点会不会在最后一个阶段被放入队列.(洛谷数据40分) 优化了一下 ...
- 洛谷 P5663 加工零件 & [NOIP2019普及组] (奇偶最短路)
传送门 解题思路 很容易想到用最短路来解决这一道问题(题解法),因为两个点之间可以互相无限走,所以如果到某个点的最短路是x,那么x+2,x+4也一定能够达到. 但是如何保证这是正确的呢?比如说到某个点 ...
- 题解 P5663 【加工零件【民间数据】】
博客园体验更佳 讲讲我的做法 确定做法 首先,看到这道题,我直接想到的是递归,于是复杂度就上天了,考虑最短路. 如何用最短路 首先,看一张图 我们该如何解决问题? 问题:\(3\)做\(5\)阶段的零 ...
- 题解 CSP2019-J2T4【加工零件】
这题我们要求的是啥呢?仔细读题可以发现,工人传送带的关系可以看成一个 \(n\) 个点和 \(m\) 条边的无向图,然后对于每组询问 \((a,L)\),其实就是问: \(1\) 到 \(a\) 有没 ...
- CSP-J2019 加工零件
Background: 之前 $noip $死了,泥萌都说 \(noip SPFA\) 了,现在 \(noip\) 复活了,所以 \(SPFA\) 也复活了. (注:这里的 \(noip\) 跟 \( ...
- P5663 加工零件 题解
原题链接 简要题意: 给定一个图,每次询问从 \(x\) 节点开始,\(y\) 步能不能达到 \(1\) 号节点. 算法一 这也是我本人考场算法.就是 深搜 . 因为你会发现,如果 \(x\) 用 \ ...
- CSP-J/S2019试题选做
S D1T2 括号树 设\(f[u]\)表示根到\(u\)的路径上有多少子串是合法括号串.(即题目里的\(k_u\),此变量名缺乏个性,故换之) 从根向每个节点dfs,容易求出\(c[u]\):表示从 ...
- 【游记】CSP J/S 2019 游记
J 组 \(2:30\)开始, \(2:13\)还在酒店的我看了看手表...飞奔考场. T1 数字游戏 秒切. 下午某中学某大佬说可用线性基(%) T2 公交换乘 用单调队列思想,秒切. T3 纪念品 ...
随机推荐
- C语言宏技巧 X宏
前言 本文介绍下X宏的使用 首先简单介绍下宏的几种用法 #define STRCAT(X,Y) X##Y #define _STR(X) #@X #define STR(X) #X #define L ...
- Docker Dockerfile 指令详解与实战案例
Dockerfile介绍及常用指令,包括FROM,RUN,还提及了 COPY,ADD,EXPOSE,WORKDIR等,其实 Dockerfile 功能很强大,它提供了十多个指令. Dockerfile ...
- RocketMQ启动
下载RocketMQ解压启动 > unzip rocketmq-all-4.4.0-source-release.zip > cd rocketmq-all-4.4.0/ > mvn ...
- SpringCloud教程第6篇:config(F版本)
一.简介 在分布式系统中,由于服务数量巨多,为了方便服务配置文件统一管理,实时更新,所以需要分布式配置中心组件.在Spring Cloud中,有分布式配置中心组件spring cloud config ...
- Centos 7使用systemctl补全服务名称
使用jsw将程序打包成服务后,发现不能使用service + 服务名前几个字母 + tab 快捷键补全服务名,但是tab键可以补全文件夹名,翻阅了各个文档后,最终还是找到了问题所在. 本人安装的是Ce ...
- android屏幕适配的全攻略3-动态获取手机屏幕宽高及动态设置控件宽高
1.获取手机屏幕宽高: DisplayMetrics dm = new DisplayMetrics(); getWindowManager().getDefaultDisplay().getMetr ...
- 阿里巴巴--mysql中Mysql模糊查询like效率,以及更高效的写法
在使用msyql进行模糊查询的时候,很自然的会用到like语句,通常情况下,在数据量小的时候,不容易看出查询的效率,但在数据量达到百万级,千万级的时候,查询的效率就很容易显现出来.这个时候查询的效率就 ...
- ArrayList类的使用
ArrayList常用类方法 (1)添加元素 public boolean add(E element) 在集合末端添加一个元素 public void add(int index,E element ...
- 3分钟理解NMS非极大值抑制
1. NMS被广泛用到目标检测技术中,正如字面意思,抑制那些分数低的目标,使最终框的位置更准: 2. 假如图片上实际有10张人脸,但目标检测过程中,检测到有30个框的位置,并且模型都认为它们是人脸,造 ...
- 14 张思维导图构建 Python 核心知识体系
ZOE是一名医学生,在自己博客分享了很多高质量的思维导图.本文中所列的 14 张思维导图(高清图见文末),是 17 年作者开始学习 Python 时所记录的,希望对大家有所帮助.原文:https:// ...