The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward is going to arrange the order of the problems. As we know, the arrangement will have
a great effect on the result of the contest. For example, it will take more time to finish the first problem if the easiest problem hides in the middle of the problem list.

There are N problems in the contest. Certainly, it's not interesting if the problems are sorted in the order of increasing difficulty. Edward decides to arrange the problems
in a different way. After a careful study, he found out that the i-th problem placed in the j-th position will add Pij points of "interesting value" to the contest.

Edward wrote a program which can generate a random permutation of the problems. If the total interesting value of a permutation is larger than or equal to M points, the permutation
is acceptable. Edward wants to know the expected times of generation needed to obtain the first acceptable permutation.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers N (1 <= N <= 12) and M (1 <= M <= 500).

The next N lines, each line contains N integers. The j-th integer in the i-th line is Pij (0 <= Pij <= 100).

Output

For each test case, output the expected times in the form of irreducible fraction. An irreducible fraction is a fraction in which the numerator and denominator are positive integers and
have no other common divisors than 1. If it is impossible to get an acceptable permutation, output "No solution" instead.

Sample Input

2
3 10
2 4 1
3 2 2
4 5 3
2 6
1 3
2 4

Sample Output

3/1
No solution
题意:让你安排n个问题的顺序,第i个问题安排在第j个位置会有p[i][j]的价值,问安排后总价值大于等于m 的期望是多少。
思路:直接枚举会超时,发现n比较小,所以采用状压dp。用dp[i][state][j]表示当前正安排第i个问题,当前已经安排问题位置的状态为state,总价值为j的方案数。这里i这一维可以省略不写。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <stack>
using namespace std;
#define maxn 1005
#define inf 999999999
int a[20][20],dp[1<<13][505];
int jiecheng[20];
void init()
{
int i,j;
jiecheng[1]=1;
for(i=2;i<=12;i++){
jiecheng[i]=jiecheng[i-1]*i;
}
} int cal(int state)
{
int i,j,tot=0;
while(state){
if(state&1)tot++;
state>>=1;
}
return tot;
} int gcd(int a,int b){
return (b>0)?gcd(b,a%b):a;
} int main()
{
int n,m,i,j,T,state;
init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
scanf("%d",&a[i][j]);
}
}
for(state=0;state<(1<<n);state++){
for(j=0;j<=m;j++){
dp[state][j]=0;
}
}
dp[0][0]=1;
for(state=1;state<(1<<n);state++){
int tot=cal(state); //算出state中1的个数,即安排到第tot个问题
for(i=1;i<=n;i++){
if(state&(1<<(i-1))){
int state1=state^(1<<(i-1));
for(j=0;j<=m;j++){
int sum=j+a[tot][i];
if(sum>m)sum=m;
dp[state][sum]+=dp[state1][j];
}
}
}
}
int num1,num2;
num1=dp[(1<<n)-1 ][m];
if(num1==0){
printf("No solution\n");continue;
}
num2=jiecheng[n];
int gong=gcd(num1,num2);
printf("%d/%d\n",num2/gong,num1/gong);
}
return 0;
}

zoj3777 Problem Arrangement(状压dp,思路赞)的更多相关文章

  1. ZOJ 3777 - Problem Arrangement - [状压DP][第11届浙江省赛B题]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 Time Limit: 2 Seconds      Me ...

  2. ZOJ 3777 B - Problem Arrangement 状压DP

    LINK:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 题意:有N(\( N <= 12 \))道题,排顺序 ...

  3. 2014 Super Training #4 B Problem Arrangement --状压DP

    原题:ZOJ 3777  http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 题意:给每个题目安排在每个位置的value ...

  4. FZU - 2218 Simple String Problem(状压dp)

    Simple String Problem Recently, you have found your interest in string theory. Here is an interestin ...

  5. ZOJ 3777-Problem Arrangement(状压DP)

    B - Problem Arrangement Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %l ...

  6. [状压DP思路妙题]图

    源自 luhong 大爷的 FJ 省冬令营模拟赛题 Statement 给定一个 \(n\) 个点 \(m\) 条边的图,没有重边与自环 每条边的两端点编号之差不超过 \(12\) 求选出一个非空点集 ...

  7. FZU2218 Simple String Problem(状压DP)

    首先,定义S,表示前k个字符出现的集合,用二进制来压缩. 接下来,推出dp1[S],表示集合为S的子串的最长长度. 然后根据dp1[S]再推出dp2[S],表示集合为S或S的子集的子串的最长长度. 最 ...

  8. 「状压DP」「暴力搜索」排列perm

    「状压DP」「暴力搜索」排列 题目描述: 题目描述 给一个数字串 s 和正整数 d, 统计 sss 有多少种不同的排列能被 d 整除(可以有前导 0).例如 123434 有 90 种排列能被 2 整 ...

  9. Problem Arrangement ZOJ - 3777(状压dp + 期望)

    ZOJ - 3777 就是一个入门状压dp期望 dp[i][j] 当前状态为i,分数为j时的情况数然后看代码 有注释 #include <iostream> #include <cs ...

随机推荐

  1. 【剑指 Offer】04.二维数组中的查找

    题目描述 在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. ...

  2. LeetCode733 图像渲染

    有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 到 65535 之间. 给你一个坐标 (sr, sc) 表示图像渲染开始的像素值(行 ,列)和一个新的颜色值 newCol ...

  3. self-taught CS resouce recommendation

    https://github.com/keithnull/TeachYourselfCS-CN/blob/master/TeachYourselfCS-CN.md#%E8%AE%A1%E7%AE%97 ...

  4. 跟我一起学Redis之加个哨兵让主从复制更加高可用

    前言 主从复制的实现在上一篇已经分享过,虽然主从复制本身的确让读写分离更加高效,但是对于整体高可用存在很大的劣势:当主节点宕机了之后还需要人为重新进行主从关系配置:这不是开玩笑嘛,这样人为干预,故障恢 ...

  5. win10/windows 安装Pytorch

    https://pytorch.org/get-started/locally/ 去官网,选择你需要的版本. 把 pip install torch==1.5.0+cu101 torchvision= ...

  6. MyISAM与InnoDB两者之间区别与选择(转)

    Mysql在V5.1之前默认存储引擎是MyISAM:在此之后默认存储引擎是InnoDB MyISAM:默认表类型,它是基于传统的ISAM类型,ISAM是Indexed Sequential Acces ...

  7. 【Oracle】查看哪些用户被授予了DBA权限

    查看哪些用户被授予了DBA权限 select * from dba_role_privs where granted_role='DBA'; 回收权限: revoke dba from xxx;

  8. gears-绕过rbash

    0x00 信息收集 0x01 smb攻击 crunch 生成密码的一个软件 @%%,这个是给的密码参数. crunch 4 4 -t @%%, -o words 最小4位,最长 4位 fcrackzi ...

  9. luoguP2016 战略游戏

    题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题.他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能了 ...

  10. Docker 如何动态修改容器端口映射

    Docker端口映射往往是Docker Run命令时通过-p将容器内部端口映射到宿主机的指定端口上,一般来说容器的端口所对应的端口是提前确定需要映射的.但是有些情况下不得不需要临时映射端口,例如Doc ...