zoj3777 Problem Arrangement(状压dp,思路赞)
The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward is going to arrange the order of the problems. As we know, the arrangement will have
a great effect on the result of the contest. For example, it will take more time to finish the first problem if the easiest problem hides in the middle of the problem list.
There are N problems in the contest. Certainly, it's not interesting if the problems are sorted in the order of increasing difficulty. Edward decides to arrange the problems
in a different way. After a careful study, he found out that the i-th problem placed in the j-th position will add Pij points of "interesting value" to the contest.
Edward wrote a program which can generate a random permutation of the problems. If the total interesting value of a permutation is larger than or equal to M points, the permutation
is acceptable. Edward wants to know the expected times of generation needed to obtain the first acceptable permutation.
Input
There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
The first line contains two integers N (1 <= N <= 12) and M (1 <= M <= 500).
The next N lines, each line contains N integers. The j-th integer in the i-th line is Pij (0 <= Pij <= 100).
Output
For each test case, output the expected times in the form of irreducible fraction. An irreducible fraction is a fraction in which the numerator and denominator are positive integers and
have no other common divisors than 1. If it is impossible to get an acceptable permutation, output "No solution" instead.
Sample Input
2
3 10
2 4 1
3 2 2
4 5 3
2 6
1 3
2 4
Sample Output
3/1
No solution
题意:让你安排n个问题的顺序,第i个问题安排在第j个位置会有p[i][j]的价值,问安排后总价值大于等于m 的期望是多少。
思路:直接枚举会超时,发现n比较小,所以采用状压dp。用dp[i][state][j]表示当前正安排第i个问题,当前已经安排问题位置的状态为state,总价值为j的方案数。这里i这一维可以省略不写。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <stack>
using namespace std;
#define maxn 1005
#define inf 999999999
int a[20][20],dp[1<<13][505];
int jiecheng[20];
void init()
{
int i,j;
jiecheng[1]=1;
for(i=2;i<=12;i++){
jiecheng[i]=jiecheng[i-1]*i;
}
}
int cal(int state)
{
int i,j,tot=0;
while(state){
if(state&1)tot++;
state>>=1;
}
return tot;
}
int gcd(int a,int b){
return (b>0)?gcd(b,a%b):a;
}
int main()
{
int n,m,i,j,T,state;
init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
scanf("%d",&a[i][j]);
}
}
for(state=0;state<(1<<n);state++){
for(j=0;j<=m;j++){
dp[state][j]=0;
}
}
dp[0][0]=1;
for(state=1;state<(1<<n);state++){
int tot=cal(state); //算出state中1的个数,即安排到第tot个问题
for(i=1;i<=n;i++){
if(state&(1<<(i-1))){
int state1=state^(1<<(i-1));
for(j=0;j<=m;j++){
int sum=j+a[tot][i];
if(sum>m)sum=m;
dp[state][sum]+=dp[state1][j];
}
}
}
}
int num1,num2;
num1=dp[(1<<n)-1 ][m];
if(num1==0){
printf("No solution\n");continue;
}
num2=jiecheng[n];
int gong=gcd(num1,num2);
printf("%d/%d\n",num2/gong,num1/gong);
}
return 0;
}
zoj3777 Problem Arrangement(状压dp,思路赞)的更多相关文章
- ZOJ 3777 - Problem Arrangement - [状压DP][第11届浙江省赛B题]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 Time Limit: 2 Seconds Me ...
- ZOJ 3777 B - Problem Arrangement 状压DP
LINK:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 题意:有N(\( N <= 12 \))道题,排顺序 ...
- 2014 Super Training #4 B Problem Arrangement --状压DP
原题:ZOJ 3777 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 题意:给每个题目安排在每个位置的value ...
- FZU - 2218 Simple String Problem(状压dp)
Simple String Problem Recently, you have found your interest in string theory. Here is an interestin ...
- ZOJ 3777-Problem Arrangement(状压DP)
B - Problem Arrangement Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%lld & %l ...
- [状压DP思路妙题]图
源自 luhong 大爷的 FJ 省冬令营模拟赛题 Statement 给定一个 \(n\) 个点 \(m\) 条边的图,没有重边与自环 每条边的两端点编号之差不超过 \(12\) 求选出一个非空点集 ...
- FZU2218 Simple String Problem(状压DP)
首先,定义S,表示前k个字符出现的集合,用二进制来压缩. 接下来,推出dp1[S],表示集合为S的子串的最长长度. 然后根据dp1[S]再推出dp2[S],表示集合为S或S的子集的子串的最长长度. 最 ...
- 「状压DP」「暴力搜索」排列perm
「状压DP」「暴力搜索」排列 题目描述: 题目描述 给一个数字串 s 和正整数 d, 统计 sss 有多少种不同的排列能被 d 整除(可以有前导 0).例如 123434 有 90 种排列能被 2 整 ...
- Problem Arrangement ZOJ - 3777(状压dp + 期望)
ZOJ - 3777 就是一个入门状压dp期望 dp[i][j] 当前状态为i,分数为j时的情况数然后看代码 有注释 #include <iostream> #include <cs ...
随机推荐
- 在MongoDB中执行查询与创建索引
实验目的: (1)掌握MongoDB中数据查询的方法: (2)掌握MongoDB中索引及其创建: 实验内容: 一. MongoDB中数据查询的方法: (1)find函数的使用: (2)条件操作符: a ...
- Redis-4.X 版本 Redis Cluster集群 (一)
一 创建redis cluster 集群前提条件: 1 ) 每个redis node 节点采用相同的硬件配置,相同的密码. 2 ) 每个节点必须开启的参数: cluster-enabled yes # ...
- QA职责
- Python基础语法3-输入、输出语句
- centos7安装docker、docker-compose、es7.3.0、kibana7.3.0
一.安装docker 1.更新yum包 sudo yum update 2.卸载旧版本(如果安装过旧版本的话) sudo yum remove docker docker-common docker- ...
- feign使用okHttpClient,调用原理
最近项目中 spring cloud 用到http请求,使用feign,配置okhttp,打算配置一下就直接使用,不过在压测与调优过程中遇到一些没有预测到的问题,附上排查与解析结 yml.pom配置 ...
- 云原生流水线 Argo Workflow 的安装、使用以及个人体验
注意:这篇文章并不是一篇入门教程,学习 Argo Workflow 请移步官方文档 Argo Documentation Argo Workflow 是一个云原生工作流引擎,专注于编排并行任务.它的特 ...
- JavaScript中的构造函数和原型!
JavaScript中的原型! 原型的内容是涉及到JavaScript中的构造函数的 每一个构造函数都有一个原型对象!prototype 他的作用是 共享方法!还可以扩展内置对象[对原来的内置对象进行 ...
- Linux中LPC、RPC、IPC的区别
其实这玩意儿就是纸老虎,将英文缩写翻译为中文就明白一半了. IPC:(Inter Process Communication )跨进程通信 这个概念泛指进程之间任何形式的通信行为,是个可以拿来到处套的 ...
- 目前 c++ primer学习总结笔记
C++的开始 1 main的返回值:0为成功状态,非0为系统定义的错误类型 2 输入输出:计算结果为左侧运算对象,IO操作读写缓冲与程序中的动作无关 3 输入流istream对象:cin(标准输入): ...