LazyChild is a lazy child who likes candy very much. Despite being very young, he has two large candy boxes, each contains n candies initially. Everyday he chooses one box and open it. He chooses the first box with probability p and the second box with probability (1 - p). For the chosen box, if there are still candies in it, he eats one of them; otherwise, he will be sad and then open the other box. 
He has been eating one candy a day for several days. But one day, when opening a box, he finds no candy left. Before opening the other box, he wants to know the expected number of candies left in the other box. Can you help him?

InputThere are several test cases. 
For each test case, there is a single line containing an integer n (1 ≤ n ≤ 2 × 10 5) and a real number p (0 ≤ p ≤ 1, with 6 digits after the decimal). 
Input is terminated by EOF.OutputFor each test case, output one line “Case X: Y” where X is the test case number (starting from 1) and Y is a real number indicating the desired answer. 
Any answer with an absolute error less than or equal to 10 -4 would be accepted.Sample Input

10 0.400000
100 0.500000
124 0.432650
325 0.325100
532 0.487520
2276 0.720000

Sample Output

Case 1: 3.528175
Case 2: 10.326044
Case 3: 28.861945
Case 4: 167.965476
Case 5: 32.601816
Case 6: 1390.500000

参考博客:https://www.cnblogs.com/xcw0754/p/4753221.html

题意:有两个盒子各有n个糖(n<=2*105),每天随机选1个(概率分别为p,1-p),然后吃掉一颗糖。直到有一天打开盒子一看,这个盒子没有糖了。输入n,p,求此时另一个盒子里糖的个数的数学期望。

思路:假设没糖的是A盒子,而B盒子还有0~n个糖。由于B盒子还有0个糖的情况的期望必为0,所以省略,只需要计算1~n的。

  (1)当A盒没有糖时,B盒就可能有1~n个糖,概率为C(n+i,i)*(pn+1)*(1-p)n-i。为啥还带个大C?这是情况的种数(想象取糖时还有个顺序,有C种可能的顺序),不然的话,单靠这两个小于1的数是超级小的。

  (2)根据(1)种的概率公式,穷举B盒可能还有 i 个糖,那么对于每种情况,期望值为i*C(n+i,i)*(pn+1)*(1-p)n-i,累加这些期望值就行了。同理,B盒没有糖也是这样算,只是概率换成了(1-p)。两种情况的累加期望就是答案。

  (3)这样还是不行,求C时会爆LL,对p求幂时结果又太小,精度损失严重。C(n+i,i)*(pn+1)*(1-p)n-i这个式子的结果本身是不大的。考虑取这个式子对数,化成相加的形式x=logC(n+i,i)+ log(pn+1)+log(1-p)n-i ,(注意指数可以提到前面作为乘的形式),求出x作为指数来求ex这样就OK了(这个函数是exp(x) )。

  (4)这个C还是很难求,比如当n=200000时,i 还没有到10时,C(200000+10, 10)就爆了。对此,由于在穷举i时,C(n+i,i)是可以递推的,那么我们可以先将C给逐步取对数,再相加就行了。递推是这样的,c+=log((n+i)/i)。

  (5)总复杂度是O(n)。时间在500ms以下。

ac代码:

 1 #include <cstdio>
2 #include <cstring>
3 #include <algorithm>
4 #include <string>
5 #include <iostream>
6 #include <cmath>
7 #include <iomanip>
8 using namespace std;
9 typedef long long ll;
10 int n;double p;
11 double solve(int n,double p)
12 {
13 double c=0;
14 double ans=n*exp((n+1)*log(p));
15 // cout<<ans<<endl;
16 for(int i=1;i<n;++i)
17 {
18 c+=log((n+i)*1.0/(i*1.0));
19 ans+=(n-i)*exp(c+(n+1)*log(p)+i*log(1-p));
20 // cout<<ans<<endl;
21 }
22 return ans;
23 }
24 int main()
25 {
26 cout<<setiosflags(ios::fixed)<<setprecision(6);
27 int cas=1;
28 while(cin>>n>>p)
29 {
30
31 double res=solve(n,p)+solve(n,1-p);
32 cout<<"Case "<<cas++<<": "<<res<<endl;
33 }
34 }

hdu 4465 Candy (非原创)的更多相关文章

  1. Hdu 4465 Candy (快速排列组合+概率)

    题目链接: Hdu 4465 Candy 题目描述: 有两个箱子,每个箱子有n颗糖果,抽中第一个箱子的概率为p,抽中另一个箱子的概率为1-p.每次选择一个箱子,有糖果就拿走一颗,没有就换另外一个箱子. ...

  2. hdu 4465 Candy(二次项概率)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4465 参考博客:http://www.cnblogs.com/goagain/archive/2012 ...

  3. hdu 4465 Candy(2012 ACM-ICPC 成都现场赛)

    简单概率题,可以直接由剩余n个递推到剩余0个.现在考虑剩余x个概率为(1-p)的candy时,概率为C(2 * n - x, x) * pow(p, n + 1)  *pow(1 - p, n - x ...

  4. hdu 4465 Candy 数学

    思路:易知结果为 ∑(n-k)*C(n+k,k)*(p^(n+1)*q^k+q^(n+1)*p^k). 注意不能直接算,注意点技巧!!!看代码 代码如下: #include<iostream&g ...

  5. hdu 4465 Candy

    题解: 由题意得 需要运用: C(m,n)=exp(logC(m,n)) f[]=; ; i<=; i++) f[i]=f[i-]+log(i*1.0); double logC(int m,i ...

  6. HDU 4465 - Candy(概率与数学优化)

    2012成都Regional的B题,花了一个小时推出了式子,但是搞了好久发现都控制不了精度,后来突然想到组合数可以用log优化,改了之后就AC了 比较水的概率题 #include <stdio. ...

  7. hdu 4465 Candy 2012 成都现场赛

    /** 对于大数的很好的应用,,缩小放大,,保持精度 **/ #include <iostream> #include <cmath> #include <algorit ...

  8. HDU 4465 Candy (数学期望)

    题意:有两个盒子各有n个糖(n<=2*105),每天随机选1个(概率分别为p,1-p),然后吃掉一颗糖.直到有一天打开盒子一看,这个盒子没有糖了.输入n,p,求此时另一个盒子里糖的个数的数学期望 ...

  9. Linux下high CPU分析心得【非原创】

    非原创,搬运至此以作笔记, 原地址:http://www.cnitblog.com/houcy/archive/2012/11/28/86801.html 1.用top命令查看哪个进程占用CPU高ga ...

随机推荐

  1. Python入门之修改jupyter启动目录

    [导读]在给大家分享知识的过程中,我们也会分享一些小技巧,能够帮助大家在学习过程中有更好的体验.之前我们给大家分享了anaconda安装教程以及jupyter notebook使用方法,今天我们为大家 ...

  2. 如何在 Blazor WebAssembly中 使用 功能开关

    微软Azure 团队开发的 功能管理 (Feature Management) 包 Microsoft.FeatureManagement可用于实现 功能开关,可以通过 功能开关 特性动态的改变应用程 ...

  3. Linux内核分析_课程学习总结报告

    请您根据本课程所学内容总结梳理出一个精简的Linux系统概念模型,最大程度统摄整顿本课程及相关的知识信息,模型应该是逻辑上可以运转的.自洽的,并举例某一两个具体例子(比如读写文件.分配内存.使用I/O ...

  4. redis修改requirepass 参数 改密码

    1. 不重启redis如何配置密码? a. 在配置文件中配置requirepass的密码(当redis重启时密码依然有效). # requirepass foobared  ->  修改成 :  ...

  5. Android 开发学习进程0.27 kotlin使用 和viewbinding的使用

    kotlin-android-extensions 插件被废弃 笔者曾经尝试写过一部分的kotlin代码 主要是项目中一些代码是kotlin完成的,其中我认为 kotlin的kotlin-androi ...

  6. 开心!再也不用担心 IntelliJ IDEA 试用过期了

    背景 前段时间 Review 团队小伙伴代码,发现当他把鼠标挪到一个方法上时,就自动显示了该方法的所有注释信息,像下图这样,他和我用的 IDE 都是 IntelliJ IDEA. 而我还按古老的方式, ...

  7. 02. struts2中Action名称的搜索顺序

    搜索顺序 获得请求路径的URI,例如URL为:http://localhost:8080/struts2/path1/path2/path3/student.action 首先寻找namespace为 ...

  8. XShell的手动直连,避免配置ssh免密的一些问题

  9. 选出ip记录表最近的10行数据

    w select * from wip where id>(select (select max(id)from wip)-10) ;

  10. HTTPS学习(二):原理与实践

    div.example { background-color: rgba(229, 236, 243, 1); color: rgba(0, 0, 0, 1); padding: 0.5em; mar ...