hdu 4465 Candy (非原创)
He has been eating one candy a day for several days. But one day, when opening a box, he finds no candy left. Before opening the other box, he wants to know the expected number of candies left in the other box. Can you help him?
InputThere are several test cases.
For each test case, there is a single line containing an integer n (1 ≤ n ≤ 2 × 10 5) and a real number p (0 ≤ p ≤ 1, with 6 digits after the decimal).
Input is terminated by EOF.OutputFor each test case, output one line “Case X: Y” where X is the test case number (starting from 1) and Y is a real number indicating the desired answer.
Any answer with an absolute error less than or equal to 10 -4 would be accepted.Sample Input
10 0.400000
100 0.500000
124 0.432650
325 0.325100
532 0.487520
2276 0.720000
Sample Output
Case 1: 3.528175
Case 2: 10.326044
Case 3: 28.861945
Case 4: 167.965476
Case 5: 32.601816
Case 6: 1390.500000
参考博客:https://www.cnblogs.com/xcw0754/p/4753221.html
题意:有两个盒子各有n个糖(n<=2*105),每天随机选1个(概率分别为p,1-p),然后吃掉一颗糖。直到有一天打开盒子一看,这个盒子没有糖了。输入n,p,求此时另一个盒子里糖的个数的数学期望。
思路:假设没糖的是A盒子,而B盒子还有0~n个糖。由于B盒子还有0个糖的情况的期望必为0,所以省略,只需要计算1~n的。
(1)当A盒没有糖时,B盒就可能有1~n个糖,概率为C(n+i,i)*(pn+1)*(1-p)n-i。为啥还带个大C?这是情况的种数(想象取糖时还有个顺序,有C种可能的顺序),不然的话,单靠这两个小于1的数是超级小的。
(2)根据(1)种的概率公式,穷举B盒可能还有 i 个糖,那么对于每种情况,期望值为i*C(n+i,i)*(pn+1)*(1-p)n-i,累加这些期望值就行了。同理,B盒没有糖也是这样算,只是概率换成了(1-p)。两种情况的累加期望就是答案。
(3)这样还是不行,求C时会爆LL,对p求幂时结果又太小,精度损失严重。C(n+i,i)*(pn+1)*(1-p)n-i这个式子的结果本身是不大的。考虑取这个式子对数,化成相加的形式x=logC(n+i,i)+ log(pn+1)+log(1-p)n-i ,(注意指数可以提到前面作为乘的形式),求出x作为指数来求ex这样就OK了(这个函数是exp(x) )。
(4)这个C还是很难求,比如当n=200000时,i 还没有到10时,C(200000+10, 10)就爆了。对此,由于在穷举i时,C(n+i,i)是可以递推的,那么我们可以先将C给逐步取对数,再相加就行了。递推是这样的,c+=log((n+i)/i)。
(5)总复杂度是O(n)。时间在500ms以下。
ac代码:
1 #include <cstdio>
2 #include <cstring>
3 #include <algorithm>
4 #include <string>
5 #include <iostream>
6 #include <cmath>
7 #include <iomanip>
8 using namespace std;
9 typedef long long ll;
10 int n;double p;
11 double solve(int n,double p)
12 {
13 double c=0;
14 double ans=n*exp((n+1)*log(p));
15 // cout<<ans<<endl;
16 for(int i=1;i<n;++i)
17 {
18 c+=log((n+i)*1.0/(i*1.0));
19 ans+=(n-i)*exp(c+(n+1)*log(p)+i*log(1-p));
20 // cout<<ans<<endl;
21 }
22 return ans;
23 }
24 int main()
25 {
26 cout<<setiosflags(ios::fixed)<<setprecision(6);
27 int cas=1;
28 while(cin>>n>>p)
29 {
30
31 double res=solve(n,p)+solve(n,1-p);
32 cout<<"Case "<<cas++<<": "<<res<<endl;
33 }
34 }
hdu 4465 Candy (非原创)的更多相关文章
- Hdu 4465 Candy (快速排列组合+概率)
题目链接: Hdu 4465 Candy 题目描述: 有两个箱子,每个箱子有n颗糖果,抽中第一个箱子的概率为p,抽中另一个箱子的概率为1-p.每次选择一个箱子,有糖果就拿走一颗,没有就换另外一个箱子. ...
- hdu 4465 Candy(二次项概率)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4465 参考博客:http://www.cnblogs.com/goagain/archive/2012 ...
- hdu 4465 Candy(2012 ACM-ICPC 成都现场赛)
简单概率题,可以直接由剩余n个递推到剩余0个.现在考虑剩余x个概率为(1-p)的candy时,概率为C(2 * n - x, x) * pow(p, n + 1) *pow(1 - p, n - x ...
- hdu 4465 Candy 数学
思路:易知结果为 ∑(n-k)*C(n+k,k)*(p^(n+1)*q^k+q^(n+1)*p^k). 注意不能直接算,注意点技巧!!!看代码 代码如下: #include<iostream&g ...
- hdu 4465 Candy
题解: 由题意得 需要运用: C(m,n)=exp(logC(m,n)) f[]=; ; i<=; i++) f[i]=f[i-]+log(i*1.0); double logC(int m,i ...
- HDU 4465 - Candy(概率与数学优化)
2012成都Regional的B题,花了一个小时推出了式子,但是搞了好久发现都控制不了精度,后来突然想到组合数可以用log优化,改了之后就AC了 比较水的概率题 #include <stdio. ...
- hdu 4465 Candy 2012 成都现场赛
/** 对于大数的很好的应用,,缩小放大,,保持精度 **/ #include <iostream> #include <cmath> #include <algorit ...
- HDU 4465 Candy (数学期望)
题意:有两个盒子各有n个糖(n<=2*105),每天随机选1个(概率分别为p,1-p),然后吃掉一颗糖.直到有一天打开盒子一看,这个盒子没有糖了.输入n,p,求此时另一个盒子里糖的个数的数学期望 ...
- Linux下high CPU分析心得【非原创】
非原创,搬运至此以作笔记, 原地址:http://www.cnitblog.com/houcy/archive/2012/11/28/86801.html 1.用top命令查看哪个进程占用CPU高ga ...
随机推荐
- PAT练习num3-跟奥巴马一起学编程
美国总统奥巴马不仅呼吁所有人都学习编程,甚至以身作则编写代码,成为美国历史上首位编写计算机代码的总统.2014 年底,为庆祝"计算机科学教育周"正式启动,奥巴马编写了很简单的计算机 ...
- 阿里云VOD(三)
一.视频播放器 参考文档:https://help.aliyun.com/document_detail/125570.html?spm=a2c4g.11186623.6.1083.1c53448bl ...
- linux通过ntpd同步服务器时间,
ntpd得rpm包下载地址:https://pkgs.org/download/ntp 比如我得服务器版本是centos7 x86的,那选择我点击的这一个: 下拉到最下面就有安装包下载了,我选择的是二 ...
- 使用Python对MySQL数据库插入二十万条数据
1.当我们测试的时候需要大量的数据的时候,往往需要我们自己造数据,一条一条的加是不现实的,这时候就需要使用脚本来批量生成数据了. import pymysql import random import ...
- jmeter报Address already in use: connect
jmeter报Address already in use: connect 用windows进行jmeter压测出现java.net.BindException: Address already ...
- hook笔记②
- (Oracle)常用的数据库函数
Trim: Trim() 函数的功能是去掉首尾空格. Eg: trim(to_char(level, '00')) Trunc: 1.TRUNC函数为指定元素而截去的日期值. trun ...
- 利用burp抓取https的包
本片文章仅供学习使用,切勿触犯法律! 0x01.打开burp的代理监听器 0x02.使用代理访问 这里我是用的是mantra,其他浏览器同理. 0x03.浏览器输入http://burp 点击CA C ...
- Spark练习之创建RDD(集合、本地文件),RDD持久化及RDD持久化策略
Spark练习之创建RDD(集合.本地文件) 一.创建RDD 二.并行化集合创建RDD 2.1 Java并行创建RDD--计算1-10的累加和 2.2 Scala并行创建RDD--计算1-10的累加和 ...
- Vuejs 基础学习教程
(四)构建基础进阶-env文件与环境设置 我们在实际开发中,我们一般会经历项目的开发阶段,测试阶段,和最终上线阶段,每个阶段对于项目代码的需要可能都有所不同,那我们怎么让它在不同阶段呈现不同的效果呢? ...