CDOJ 1330 柱爷与远古法阵【高斯消元,卡精度】
柱爷与远古法阵
Time Limit: 125/125MS (Java/Others) Memory Limit: 240000/240000KB (Java/Others)
众所周知,柱爷的数学非常好,尤其擅长概率论!
某日柱爷在喵哈哈村散步,无意间踏入了远古法阵!
法阵很奇怪,是一个长度为NN的走廊,初始时柱爷在最左边,现在柱爷要到最右边去!
柱爷的行动方式如下:
每个回合柱爷会投一次骰子,根据骰子上的点数每个回合柱爷会投一次骰子,根据骰子上的点数X,柱爷会相应的往右边移动,柱爷会相应的往右边移动X步.步.
骰子的数值是骰子的数值是1到到6,取到每面的概率相同,取到每面的概率相同
在某些位置可能有传送门,一旦柱爷在该回合结束后在这个位置上,会被强制传送到传送门的另外一边在某些位置可能有传送门,一旦柱爷在该回合结束后在这个位置上,会被强制传送到传送门的另外一边
传送门是单向的,同时每个位置不会有超过1个传送门,同时不会存在a→b,b→c这种情况传送门是单向的,同时每个位置不会有超过1个传送门,同时不会存在a→b,b→c这种情况
在任意时刻柱爷都必须保证在法阵内,也就说如果在这一回合结束后柱爷的位置在法阵外,那么这回合柱爷将什么都不做在任意时刻柱爷都必须保证在法阵内,也就说如果在这一回合结束后柱爷的位置在法阵外,那么这回合柱爷将什么都不做
那么请问柱爷到达最右边的期望回合数是多少呢?或者是永远都无法到达?
Input
第一行两个整数NN,MM,分别表示法阵的长度和传送门的数量
接下来MM行,每行两个整数uu,vv,表示从uu到vv有一扇传送门
数据保证:
1≤N≤3001≤N≤300
0≤M≤[N−22]0≤M≤[N−22]
1<u<N,1≤v≤N,u≠v1<u<N,1≤v≤N,u≠v
Output
输出仅一行,表示期望的回合数,如果永远不能到达,输出−1−1.
答案误差在10−610−6以内将被忽略
Sample input and output
Sample Input | Sample Output |
---|---|
100 0 |
33.0476190476 |
100 2 |
29.8571428571 |
Hint
你可能需要一些概率论 & 线性代数的知识才能解决本题!
Source
#include <bits/stdc++.h>
using namespace std;
const int maxn=;
const long double eps=1e-;
long double a[maxn][maxn];//构造的高斯消元的矩阵,代表第i个方程式的第j个系数是多少 ,精度要求很高
int n,m,f[maxn],x,y;
inline int read()//读入优化
{
int x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')
f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
inline void write(int x)//输出优化
{
if(x<)
{
putchar('-');
x=-x;
}
if(x>)
write(x/);
putchar(x%+'');
}
int main()
{
n=read();
m=read();
for(int i=;i<=n;i++)
f[i]=i;
for(int i=;i<=m;i++)//如果有传送的话,到哪里
f[read()]=read();
//建立增广矩阵的过程
for(int i=;i<n;i++)
{
a[i][i]=;//第一个方程
if(f[i]!=i)
a[i][f[i]]=-;//如果有传送门 系数直接抵消 x-y=0 相当于 x=y
else
{
a[i][n+]=;//方程右边的常数
for(int j=;j<=;j++)
{
if(i+j<=n)
a[i][i+j]-=1.0;
else
a[i][i]-=1.0;//另外一个方程
}
}
}
a[n][n]=1.0;//最后的方程
a[n][n+]=;
//高斯消元的过程
for(int i=;i<=n;i++)
{
int p=i;
for(int j=i+;j<=n;j++)
{
if(fabs(a[j][i])>eps)//向下查找第j个系数不为0的方程
p=j;
}
if(fabs(a[p][i])>eps)
{
for(int j=i;j<=n+;j++)
swap(a[i][j],a[p][j]);//把方程移上来
for(int j=i+;j<=n;j++)//向下消元 同时除去其他的系数
{
if(fabs(a[j][i])>eps)
{
long double k=a[j][i]/a[i][i];//消元
for(int t=i;t<=n+;t++)
a[j][t]-=a[i][t]*k;//系数相减
}
}
}
}
//回代过程
for(int i=n;i>=;i--)
{
for(int j=i+;j<=n;j++)
{
if(fabs(a[i][j])>eps)
a[i][n+]-=a[i][j]*a[j][n+];//用已知的解求未知解
}
if(abs(a[i][i])<=eps&&abs(a[i][n+])>eps)//如果出现矛盾
{
printf("-1\n");
return ;
}
a[i][n+]/=a[i][i];//求出当前的解
}
printf("%.12lf\n",(double)a[][n+]);//a[i][n+1]就是第i个未知数的解
return ;
}
CDOJ 1330 柱爷与远古法阵【高斯消元,卡精度】的更多相关文章
- CDOJ 1330 柱爷与远古法阵(高斯消元)
CDOJ 1330 柱爷与远古法阵(高斯消元) 柱爷与远古法阵 Time Limit: 125/125MS (Java/Others) Memory Limit: 240000/240000K ...
- UESTC 1330 柱爷与远古法阵【高斯消元】
题目链接[http://acm.uestc.edu.cn/#/problem/show/1330] 题意:有一个长度为L(L <= 300)的长廊,有一人站在最左边,他要到最右边去,他每次可以走 ...
- UVALive - 6185 Find the Outlier暴力填表+高斯消元+卡eps
https://cn.vjudge.net/problem/UVALive-6185 我真的是服了orz eps 1e5,1e6过不了 开1e2 1e1都能过 题意:给你一个d阶多项式f的f(0),f ...
- hihoCoder #1195 高斯消元·一
题意:便利店老板为了促销,推出了组合包的形式,将不同数量的各类商品打包成一个组合.比如2袋薯片,1听可乐的组合只要5元,而1袋薯片,2听可乐的组合只要4元.通过询问老板知道:一共有N种不同的商品和M种 ...
- 洛谷P4457/loj#2513 [BJOI2018]治疗之雨(高斯消元+概率期望)
题面 传送门(loj) 传送门(洛谷) 题解 模拟赛的时候只想出了高斯消元然后死活不知道怎么继续--结果正解居然就是高斯消元卡常? 首先有个比较难受的地方是它一个回合可能不止扣一滴血--我们得算出\( ...
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
- 【BZOJ-3270】博物馆 高斯消元 + 概率期望
3270: 博物馆 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 292 Solved: 158[Submit][Status][Discuss] ...
- *POJ 1222 高斯消元
EXTENDED LIGHTS OUT Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9612 Accepted: 62 ...
- [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...
随机推荐
- Oracle数据库(一)概述、基础与简单操作
数据库: 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库. 数据库分类: 关系型数据库 非关系型数据库 数据库 类型 特性 优点 缺点 关系型数据库 SQLite.Oracle. ...
- 排查程序死循环,死锁的方法 ——pstack
pstack命令可显示每个进程的栈跟踪,pstack $pid即可,pstack命令须由$pid进程的属主或者root运行. 这次出现cpu占比100%的情况,但看memory占比,并无异常,怀疑是某 ...
- HNOI2013 BZOJ3142 数列
尝试用Markdown写一篇博客 3142: [Hnoi2013]数列 Description 小T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的 ...
- bzoj 3566: [SHOI2014]概率充电器
Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器:"采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率 ...
- Python-字典dict对象方法总结
- java操作时间,将当前时间减一年,减一天,减一个月
在Java中操作时间的时候,常常遇到求一段时间内的某些值,或者计算一段时间之间的天数 Date date = new Date();//获取当前时间 Calendar calendar = Calen ...
- c#发展前景
根据育龙网资料评价显示:C#几乎集中了所有关于软件开发和软件工程研究的最新成果:面向对象.类型安全.组件技术.自动内存管理.跨平台异常处理.版本控制.代码安全管理…….尽管像很多人注意到的一样,罗列上 ...
- 《Create Your own PHP Framework》笔记
前言 大力推荐该教程:<Create Your own PHP Framework> Symfony的学习蛮累的,官方文档虽然很丰富,但是组织方式像参考书而不是指南,一些不错的指导性文档常 ...
- js随机数生成,生成m-n的随机数
使用js生成n到m间的随机数字,主要目的是为后期的js生成验证码做准备,Math.random()函数返回0和1之间的伪随机数 var random = Math.random(); console. ...
- Tomcat 到底依赖JRE还是JDK
Tomcat 6.0 以上可以不再依赖JDK运行,直接使用JRE即可,但Tomcat 5.5以下,是必须安装JDK的. 这主要是由于,Tomcat 5.5及以下版本主要是依赖JDK去编译JSP文件生成 ...