安装Scala

使用spark-shell命令进入shell模式,查看spark版本和Scala版本:

下载Scala2.10.5

wget https://downloads.lightbend.com/scala/2.10.5/scala-2.10.5.tgz

解压

tar -xzvf scala-2.10.5.tgz

创建文件夹

mkdir -p /usr/local/scalacp -r scala-2.10.5 /usr/local/scala

配置环境

vim /etc/profile

添加内容

export SCALA_HOME=/usr/local/scala/scala-
export PATH=$PATH:$JAVA_HOME/bin:$PHOENIX_PATH/bin:$M2_HOME/bin:$SCALA_HOME/bin

生效

source /etc/profile

验证安装成功

安装Maven

参考:https://www.cnblogs.com/ratels/p/10874379.html

只是默认使用Maven中央仓库,不用另外添加Maven中央仓库的镜像;中央仓库虽然慢,但是内容全;镜像虽然速度快,但是内容有欠缺。

安装HiBench

获取源码

wget https://codeload.github.com/Intel-bigdata/HiBench/zip/master

进入文件夹下,执行以下命令进行安装

(参考:https://github.com/Intel-bigdata/HiBench  ;  https://github.com/Intel-bigdata/HiBench/blob/master/docs/build-hibench.md

mvn -Phadoopbench -Psparkbench -Dspark=1.6 -Dscala=2.10 clean package

报错:

Plugin org.apache.maven.plugins:maven-clean-plugin:2.5 or one of its dependencies could not be
The POM for org.apache.maven.plugins:maven-clean-plugin:jar:2.5 is invalid, transitive dependencies (if any) will not be available

解决方法(参考:https://blog.csdn.net/expect521/article/details/75663221):

(1)删除plugin目录下的文件夹,重新生成;

(2)设置Maven中央仓库为源;

编译后返回如下信息:

[INFO] ------------------------------------------------------------------------
[INFO] Reactor Summary:
[INFO]
[INFO] hibench 7.1-SNAPSHOT ............................... SUCCESS [ 40.848 s]
[INFO] hibench-common : min]
[INFO] HiBench data generation tools : min]
[INFO] sparkbench 7.1-SNAPSHOT ............................ SUCCESS [  0.014 s]
[INFO] sparkbench-common : min]
[INFO] sparkbench micro benchmark 7.1-SNAPSHOT ............ SUCCESS [  6.316 s]
[INFO] sparkbench machine learning benchmark : min]
[INFO] sparkbench-websearch 7.1-SNAPSHOT .................. SUCCESS [  3.217 s]
[INFO] sparkbench-graph 7.1-SNAPSHOT ...................... SUCCESS [ 43.669 s]
[INFO] sparkbench-sql 7.1-SNAPSHOT ........................ SUCCESS [ 50.434 s]
[INFO] sparkbench-streaming 7.1-SNAPSHOT .................. SUCCESS [ 11.003 s]
[INFO] sparkbench project assembly 7.1-SNAPSHOT ........... SUCCESS [ 28.359 s]
[INFO] hadoopbench 7.1-SNAPSHOT ........................... SUCCESS [  0.005 s]
[INFO] hadoopbench-sql : min]
[INFO] mahout 7.1-SNAPSHOT ................................ SKIPPED
[INFO] PEGASUS: A Peta-Scale Graph Mining System 2.0-SNAPSHOT SKIPPED
[INFO] nutchindexing 7.1-SNAPSHOT ......................... SKIPPED
[INFO] ------------------------------------------------------------------------
[INFO] BUILD FAILURE
[INFO] ------------------------------------------------------------------------
[INFO] Total : h
[INFO] Finished at: --03T17::+:
[INFO] ------------------------------------------------------------------------
[ERROR] Failed to execute goal com.googlecode.maven-download-plugin:download-maven-plugin::]
[ERROR]
[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.
[ERROR] Re-run Maven using the -X switch to enable full debug logging.
[ERROR]
[ERROR] For more information about the errors and possible solutions, please read the following articles:
[ERROR] [Help ] http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException
[ERROR]
[ERROR] After correcting the problems, you can resume the build with the command
[ERROR]   mvn <goals> -rf :hadoopbench-sql

错误原因是:

[WARNING] Could not get content
org.apache.maven.wagon.TransferFailedException: Connect to archive.apache.org: [archive.apache.org/163.172.17.199] failed: Connection timed out (Connection timed out)

Caused by: java.net.ConnectException: Connection timed out (Connection timed out)

[WARNING] Retrying ( more)
Downloading: http://archive.apache.org/dist/hive/hive-0.14.0//apache-hive-0.14.0-bin.tar.gz
java.net.SocketTimeoutException: Read timed out

本人手动去下载文件:http://archive.apache.org/dist/hive/hive-0.14.0//apache-hive-0.14.0-bin.tar.gz ,依然无法下载,说明是文件地址问题!

已经构建的模块暂时能够满足需求,先略过该问题。

创建并修改配置文件hadoop.conf

cp conf/hadoop.conf.template conf/hadoop.conf

然后修改配置文件: vim hadoop.conf

参考:https://github.com/Intel-bigdata/HiBench/blob/master/docs/run-hadoopbench.md  ;https://www.cnblogs.com/PJQOOO/p/6899988.html  ;https://blog.csdn.net/xiaoxiaojavacsdn/article/details/80235078

   # Hadoop home
   hibench.hadoop.home     /opt/cloudera/parcels/CDH--.cdh5./lib/hadoop

   # The path of hadoop executable
   hibench.hadoop.executable     /opt/cloudera/parcels/CDH--.cdh5./bin/hadoop

   # Hadoop configraution directory
   hibench.hadoop.configure.dir  /etc/hadoop/conf.cloudera.yarn

  # The root HDFS path to store HiBench data
  hibench.hdfs.master       hdfs://node1:8020

  #hdfs://localhost:8020
  #hdfs://localhost:9000

  # Hadoop release provider. Supported value: apache, cdh5, hdp
  hibench.hadoop.release    cdh5

注意:

1.hibench.hadoop.home是你本机上hadoop的安装路径。

2.在配置hibench.hdfs.master的时候我傻傻地写了hdfs://localhost:8020,导致后来运行脚本一直不成功。

首先localhost是你的机器的IP,后面的端口号可能是8020也可能是9000,要根据本机的具体情况,在命令行输入vim /etc/hadoop/conf.cloudera.yarn/core-site.xml,可以观察到

   <?xml version="1.0" encoding="UTF-8"?>

   <!--Autogenerated by Cloudera Manager-->
   <configuration>
     <property>
       <name>fs.defaultFS</name>
       <value>hdfs://node1:8020</value>
     </property>

接下来就是在HiBench下运行脚本,比如:

bin/workloads/micro/wordcount/prepare/prepare.sh

在HDFS中创建好目录

su hdfs
hadoop dfs -mkdir /HiBench/Wordcount
hadoop dfs -mkdir /HiBench/Wordcount/Input

目录创建好以后执行脚本,报错:

rm: Permission denied: user=root, access=WRITE, inode="/HiBench/Wordcount":hdfs:supergroup:drwxr-xr-x

原因:

root对hdfs创建的文件目录没有访问权限!

bash-4.2$ hadoop fs -ls /
Found  items
drwxr-xr-x   - hdfs  supergroup           -- : /HiBench
drwxr-xr-x   - hdfs  supergroup           -- : /benchmarks
drwxr-xr-x   - hbase hbase                -- : /hbase
drwxrwxrwt   - hdfs  supergroup           -- : /tmp
drwxr-xr-x   - hdfs  supergroup           -- : /user

解决方法:

(1 可选)参考:https://blog.csdn.net/dingding_ting/article/details/84955325

hadoop dfsadmin -safemode leave

(2)参考:https://blog.csdn.net/xianjie0318/article/details/75453758

hdfs dfs -chown -R root /HiBench

权限修正:

bash-4.2$ hadoop fs -ls /
Found  items
drwxr-xr-x   - root  supergroup           -- : /HiBench
drwxr-xr-x   - hdfs  supergroup           -- : /benchmarks
drwxr-xr-x   - hbase hbase                -- : /hbase
drwxrwxrwt   - hdfs  supergroup           -- : /tmp
drwxr-xr-x   - hdfs  supergroup           -- : /user

再次执行脚本,返回结果信息:

[root@node1 prepare]# ./prepare.sh
patching args=
Parsing conf: /home/cf/app/HiBench-master/conf/hadoop.conf
Parsing conf: /home/cf/app/HiBench-master/conf/hibench.conf
Parsing conf: /home/cf/app/HiBench-master/conf/workloads/micro/wordcount.conf
probe -.cdh5./lib/hadoop/../../jars/hadoop-mapreduce-client-jobclient--cdh5.14.2-tests.jar
start HadoopPrepareWordcount bench
hdfs -.cdh5./bin/hadoop --config /etc/hadoop/conf.cloudera.yarn fs -rm -r -skipTrash hdfs://node1:8020/HiBench/Wordcount/Input
Deleted hdfs://node1:8020/HiBench/Wordcount/Input
Submit MapReduce Job: /opt/cloudera/parcels/CDH--.cdh5./bin/hadoop --config /etc/hadoop/conf.cloudera.yarn jar /opt/cloudera/parcels/CDH--.cdh5./lib/hadoop/../../jars/hadoop-mapreduce-examples--cdh5. -D mapreduce.randomtextwriter.bytespermap= -D mapreduce.job.maps= -D mapreduce.job.reduces= hdfs://node1:8020/HiBench/Wordcount/Input
The job took  seconds.
finish HadoopPrepareWordcount bench

在 /home/cf/app/HiBench-master 目录下,执行脚本

bin/workloads/micro/wordcount/hadoop/run.sh

返回结果信息

[root@node1 hadoop]# ./run.sh
patching args=
Parsing conf: /home/cf/app/HiBench-master/conf/hadoop.conf
Parsing conf: /home/cf/app/HiBench-master/conf/hibench.conf
Parsing conf: /home/cf/app/HiBench-master/conf/workloads/micro/wordcount.conf
probe -.cdh5./lib/hadoop/../../jars/hadoop-mapreduce-client-jobclient--cdh5.14.2-tests.jar
start HadoopWordcount bench
hdfs -.cdh5./bin/hadoop --config /etc/hadoop/conf.cloudera.yarn fs -rm -r -skipTrash hdfs://node1:8020/HiBench/Wordcount/Output
rm: `hdfs://node1:8020/HiBench/Wordcount/Output': No such file or directory
hdfs -.cdh5./bin/hadoop --config /etc/hadoop/conf.cloudera.yarn fs -du -s hdfs://node1:8020/HiBench/Wordcount/Input
Submit MapReduce Job: /opt/cloudera/parcels/CDH--.cdh5./bin/hadoop --config /etc/hadoop/conf.cloudera.yarn jar /opt/cloudera/parcels/CDH--.cdh5./lib/hadoop/../../jars/hadoop-mapreduce-examples--cdh5. -D mapreduce.job.reduces= -D mapreduce.inputformat.class=org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat -D mapreduce.outputformat.class=org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat -D mapreduce.job.inputformat.class=org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat -D mapreduce.job.outputformat.class=org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat hdfs://node1:8020/HiBench/Wordcount/Input hdfs://node1:8020/HiBench/Wordcount/Output
         Bytes Written=
finish HadoopWordcount bench

执行结束以后可以查看分析结果

/report/hibench.report

Type         Date       Time     Input_data_size      Duration(s)          Throughput(bytes/s)  Throughput/node
HadoopWordcount 2019-06-04 16:59:04 37055                20.226               1832                 610                 

\report\wordcount路径下有两个文件夹,分别对应执行了脚本/prepare/prepare.sh和/hadoop/run.sh所产生的信息

\report\wordcount\prepare下有多个文件:monitor.log是原始日志,bench.log是Map-Reduce信息,monitor.html可视化了系统的性能信息,\conf\wordcount.conf本次任务的环境变量

\report\wordcount\hadoop下有多个文件:monitor.log是原始日志,bench.log是Map-Reduce信息,monitor.html可视化了系统的性能信息,\conf\wordcount.conf本次任务的环境变量

monitor.html中包含了Memory usage heatmap等统计图:

根据官方文档 https://github.com/Intel-bigdata/HiBench/blob/master/docs/run-hadoopbench.md ,还可以修改 hibench.scale.profile 调整测试的数据规模,修改 hibench.default.map.parallelism 和 hibench.default.shuffle.parallelism 调整并行化

HiBench成长笔记——(2) CentOS部署安装HiBench的更多相关文章

  1. HiBench成长笔记——(9) Centos安装Maven

    Maven的下载地址是:http://maven.apache.org/download.cgi 安装Maven非常简单,只需要将下载的压缩文件解压就可以了. cd /home/cf/app wget ...

  2. HiBench成长笔记——(7) 阅读《The HiBench Benchmark Suite: Characterization of the MapReduce-Based Data Analysis》

    <The HiBench Benchmark Suite: Characterization of the MapReduce-Based Data Analysis>内容精选 We th ...

  3. HiBench成长笔记——(4) HiBench测试Spark SQL

    很多内容之前的博客已经提过,这里不再赘述,详细内容参照本系列前面的博客:https://www.cnblogs.com/ratels/p/10970905.html 和 https://www.cnb ...

  4. HiBench成长笔记——(3) HiBench测试Spark

    很多内容之前的博客已经提过,这里不再赘述,详细内容参照本系列前面的博客:https://www.cnblogs.com/ratels/p/10970905.html 创建并修改配置文件conf/spa ...

  5. HiBench成长笔记——(5) HiBench-Spark-SQL-Scan源码分析

    run.sh #!/bin/bash # Licensed to the Apache Software Foundation (ASF) under one or more # contributo ...

  6. HiBench成长笔记——(1) HiBench概述

    测试分类 HiBench共计19个测试方向,可大致分为6个测试类别:分别是micro,ml(机器学习),sql,graph,websearch和streaming. 2.1 micro Benchma ...

  7. HiBench成长笔记——(11) 分析源码run.sh

    #!/bin/bash # Licensed to the Apache Software Foundation (ASF) under one or more # contributor licen ...

  8. HiBench成长笔记——(10) 分析源码execute_with_log.py

    #!/usr/bin/env python2 # Licensed to the Apache Software Foundation (ASF) under one or more # contri ...

  9. HiBench成长笔记——(9) 分析源码monitor.py

    monitor.py 是主监控程序,将监控数据写入日志,并统计监控数据生成HTML统计展示页面: #!/usr/bin/env python2 # Licensed to the Apache Sof ...

随机推荐

  1. jquery中for循环

    1.循环遍历标签 //定义数组 var imagesPath=[]; //循环遍历对象 $("#uploadList li img").each(function(){ image ...

  2. 最全Pycharm教程(39)——Pycharm版本控制之本地Git用法

    1.主题 介绍如果通过Pycharm使用本地Git集. 2.准备工作 (1)PyCharm版本为2.7或更高 (2)已经创建一个工程 (3)Git插件可用,对应可执行文件在 Git page页面正确配 ...

  3. 记数问题(0)<P2013_1>

    记数问题 (count.cpp/c/pas) [问题描述]  试计算在区间1到n的所有整数中,数字x(0≤x≤9)共出现了多少次?例如,在1到11中,即在1.2.3.4.5.6.7.8.9.10.11 ...

  4. SQL的四种连接(内连接,外连接)

    一,内连接(inner join) 内连接(INNER JOIN):分显式的和隐式的,返回连接表中符合连接条件和查询条件的数据行.(所谓的连接表就是数据库在做查询形成的中间表). 1.隐式的内连接 没 ...

  5. nginx的preaccess 阶段的limit_req模块与limit_conn模块

    limit_conn 模块限制并发连接数 [root@python vhast]# vim limit_conn.conf limit_conn_zone $binary_remote_addr zo ...

  6. 如何批量删除.svn文件

    参考资料:https://www.cnblogs.com/kisf/articles/4760367.html 当项目不需要SVN标志的时候,我们一般怎么办哪??可能很多人设置Windows显示隐藏文 ...

  7. Gof 设计模式

    设计模式的用途(参考) 设计模式代表了最佳实践,通常被有经验的面向对象的软件开发人员采用.设计模式是软件开发人员在软件开发过程中面临一般问题的解决方案.这些解决方案是众多软件开发人员在相当长的时间的实 ...

  8. Linux命令:top命令

    top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器.下面详细介绍它的使用方法.top是一个动态显示过程,即可以通过用户按键来不断刷新 ...

  9. 用Navicat连接阿里云ECS服务器上的MySQL数据库,连接不上,并且报10060错误

    设置远程访问(使用root密码): grant all privileges on . to 'root' @'%' identified by '123456'; flush privileges; ...

  10. 本周总结(19年暑假)—— Part6

    日期:2019.8.18 博客期:112 星期日