安装Scala

使用spark-shell命令进入shell模式,查看spark版本和Scala版本:

下载Scala2.10.5

wget https://downloads.lightbend.com/scala/2.10.5/scala-2.10.5.tgz

解压

tar -xzvf scala-2.10.5.tgz

创建文件夹

mkdir -p /usr/local/scalacp -r scala-2.10.5 /usr/local/scala

配置环境

vim /etc/profile

添加内容

export SCALA_HOME=/usr/local/scala/scala-
export PATH=$PATH:$JAVA_HOME/bin:$PHOENIX_PATH/bin:$M2_HOME/bin:$SCALA_HOME/bin

生效

source /etc/profile

验证安装成功

安装Maven

参考:https://www.cnblogs.com/ratels/p/10874379.html

只是默认使用Maven中央仓库,不用另外添加Maven中央仓库的镜像;中央仓库虽然慢,但是内容全;镜像虽然速度快,但是内容有欠缺。

安装HiBench

获取源码

wget https://codeload.github.com/Intel-bigdata/HiBench/zip/master

进入文件夹下,执行以下命令进行安装

(参考:https://github.com/Intel-bigdata/HiBench  ;  https://github.com/Intel-bigdata/HiBench/blob/master/docs/build-hibench.md

mvn -Phadoopbench -Psparkbench -Dspark=1.6 -Dscala=2.10 clean package

报错:

Plugin org.apache.maven.plugins:maven-clean-plugin:2.5 or one of its dependencies could not be
The POM for org.apache.maven.plugins:maven-clean-plugin:jar:2.5 is invalid, transitive dependencies (if any) will not be available

解决方法(参考:https://blog.csdn.net/expect521/article/details/75663221):

(1)删除plugin目录下的文件夹,重新生成;

(2)设置Maven中央仓库为源;

编译后返回如下信息:

[INFO] ------------------------------------------------------------------------
[INFO] Reactor Summary:
[INFO]
[INFO] hibench 7.1-SNAPSHOT ............................... SUCCESS [ 40.848 s]
[INFO] hibench-common : min]
[INFO] HiBench data generation tools : min]
[INFO] sparkbench 7.1-SNAPSHOT ............................ SUCCESS [  0.014 s]
[INFO] sparkbench-common : min]
[INFO] sparkbench micro benchmark 7.1-SNAPSHOT ............ SUCCESS [  6.316 s]
[INFO] sparkbench machine learning benchmark : min]
[INFO] sparkbench-websearch 7.1-SNAPSHOT .................. SUCCESS [  3.217 s]
[INFO] sparkbench-graph 7.1-SNAPSHOT ...................... SUCCESS [ 43.669 s]
[INFO] sparkbench-sql 7.1-SNAPSHOT ........................ SUCCESS [ 50.434 s]
[INFO] sparkbench-streaming 7.1-SNAPSHOT .................. SUCCESS [ 11.003 s]
[INFO] sparkbench project assembly 7.1-SNAPSHOT ........... SUCCESS [ 28.359 s]
[INFO] hadoopbench 7.1-SNAPSHOT ........................... SUCCESS [  0.005 s]
[INFO] hadoopbench-sql : min]
[INFO] mahout 7.1-SNAPSHOT ................................ SKIPPED
[INFO] PEGASUS: A Peta-Scale Graph Mining System 2.0-SNAPSHOT SKIPPED
[INFO] nutchindexing 7.1-SNAPSHOT ......................... SKIPPED
[INFO] ------------------------------------------------------------------------
[INFO] BUILD FAILURE
[INFO] ------------------------------------------------------------------------
[INFO] Total : h
[INFO] Finished at: --03T17::+:
[INFO] ------------------------------------------------------------------------
[ERROR] Failed to execute goal com.googlecode.maven-download-plugin:download-maven-plugin::]
[ERROR]
[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.
[ERROR] Re-run Maven using the -X switch to enable full debug logging.
[ERROR]
[ERROR] For more information about the errors and possible solutions, please read the following articles:
[ERROR] [Help ] http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException
[ERROR]
[ERROR] After correcting the problems, you can resume the build with the command
[ERROR]   mvn <goals> -rf :hadoopbench-sql

错误原因是:

[WARNING] Could not get content
org.apache.maven.wagon.TransferFailedException: Connect to archive.apache.org: [archive.apache.org/163.172.17.199] failed: Connection timed out (Connection timed out)

Caused by: java.net.ConnectException: Connection timed out (Connection timed out)

[WARNING] Retrying ( more)
Downloading: http://archive.apache.org/dist/hive/hive-0.14.0//apache-hive-0.14.0-bin.tar.gz
java.net.SocketTimeoutException: Read timed out

本人手动去下载文件:http://archive.apache.org/dist/hive/hive-0.14.0//apache-hive-0.14.0-bin.tar.gz ,依然无法下载,说明是文件地址问题!

已经构建的模块暂时能够满足需求,先略过该问题。

创建并修改配置文件hadoop.conf

cp conf/hadoop.conf.template conf/hadoop.conf

然后修改配置文件: vim hadoop.conf

参考:https://github.com/Intel-bigdata/HiBench/blob/master/docs/run-hadoopbench.md  ;https://www.cnblogs.com/PJQOOO/p/6899988.html  ;https://blog.csdn.net/xiaoxiaojavacsdn/article/details/80235078

   # Hadoop home
   hibench.hadoop.home     /opt/cloudera/parcels/CDH--.cdh5./lib/hadoop

   # The path of hadoop executable
   hibench.hadoop.executable     /opt/cloudera/parcels/CDH--.cdh5./bin/hadoop

   # Hadoop configraution directory
   hibench.hadoop.configure.dir  /etc/hadoop/conf.cloudera.yarn

  # The root HDFS path to store HiBench data
  hibench.hdfs.master       hdfs://node1:8020

  #hdfs://localhost:8020
  #hdfs://localhost:9000

  # Hadoop release provider. Supported value: apache, cdh5, hdp
  hibench.hadoop.release    cdh5

注意:

1.hibench.hadoop.home是你本机上hadoop的安装路径。

2.在配置hibench.hdfs.master的时候我傻傻地写了hdfs://localhost:8020,导致后来运行脚本一直不成功。

首先localhost是你的机器的IP,后面的端口号可能是8020也可能是9000,要根据本机的具体情况,在命令行输入vim /etc/hadoop/conf.cloudera.yarn/core-site.xml,可以观察到

   <?xml version="1.0" encoding="UTF-8"?>

   <!--Autogenerated by Cloudera Manager-->
   <configuration>
     <property>
       <name>fs.defaultFS</name>
       <value>hdfs://node1:8020</value>
     </property>

接下来就是在HiBench下运行脚本,比如:

bin/workloads/micro/wordcount/prepare/prepare.sh

在HDFS中创建好目录

su hdfs
hadoop dfs -mkdir /HiBench/Wordcount
hadoop dfs -mkdir /HiBench/Wordcount/Input

目录创建好以后执行脚本,报错:

rm: Permission denied: user=root, access=WRITE, inode="/HiBench/Wordcount":hdfs:supergroup:drwxr-xr-x

原因:

root对hdfs创建的文件目录没有访问权限!

bash-4.2$ hadoop fs -ls /
Found  items
drwxr-xr-x   - hdfs  supergroup           -- : /HiBench
drwxr-xr-x   - hdfs  supergroup           -- : /benchmarks
drwxr-xr-x   - hbase hbase                -- : /hbase
drwxrwxrwt   - hdfs  supergroup           -- : /tmp
drwxr-xr-x   - hdfs  supergroup           -- : /user

解决方法:

(1 可选)参考:https://blog.csdn.net/dingding_ting/article/details/84955325

hadoop dfsadmin -safemode leave

(2)参考:https://blog.csdn.net/xianjie0318/article/details/75453758

hdfs dfs -chown -R root /HiBench

权限修正:

bash-4.2$ hadoop fs -ls /
Found  items
drwxr-xr-x   - root  supergroup           -- : /HiBench
drwxr-xr-x   - hdfs  supergroup           -- : /benchmarks
drwxr-xr-x   - hbase hbase                -- : /hbase
drwxrwxrwt   - hdfs  supergroup           -- : /tmp
drwxr-xr-x   - hdfs  supergroup           -- : /user

再次执行脚本,返回结果信息:

[root@node1 prepare]# ./prepare.sh
patching args=
Parsing conf: /home/cf/app/HiBench-master/conf/hadoop.conf
Parsing conf: /home/cf/app/HiBench-master/conf/hibench.conf
Parsing conf: /home/cf/app/HiBench-master/conf/workloads/micro/wordcount.conf
probe -.cdh5./lib/hadoop/../../jars/hadoop-mapreduce-client-jobclient--cdh5.14.2-tests.jar
start HadoopPrepareWordcount bench
hdfs -.cdh5./bin/hadoop --config /etc/hadoop/conf.cloudera.yarn fs -rm -r -skipTrash hdfs://node1:8020/HiBench/Wordcount/Input
Deleted hdfs://node1:8020/HiBench/Wordcount/Input
Submit MapReduce Job: /opt/cloudera/parcels/CDH--.cdh5./bin/hadoop --config /etc/hadoop/conf.cloudera.yarn jar /opt/cloudera/parcels/CDH--.cdh5./lib/hadoop/../../jars/hadoop-mapreduce-examples--cdh5. -D mapreduce.randomtextwriter.bytespermap= -D mapreduce.job.maps= -D mapreduce.job.reduces= hdfs://node1:8020/HiBench/Wordcount/Input
The job took  seconds.
finish HadoopPrepareWordcount bench

在 /home/cf/app/HiBench-master 目录下,执行脚本

bin/workloads/micro/wordcount/hadoop/run.sh

返回结果信息

[root@node1 hadoop]# ./run.sh
patching args=
Parsing conf: /home/cf/app/HiBench-master/conf/hadoop.conf
Parsing conf: /home/cf/app/HiBench-master/conf/hibench.conf
Parsing conf: /home/cf/app/HiBench-master/conf/workloads/micro/wordcount.conf
probe -.cdh5./lib/hadoop/../../jars/hadoop-mapreduce-client-jobclient--cdh5.14.2-tests.jar
start HadoopWordcount bench
hdfs -.cdh5./bin/hadoop --config /etc/hadoop/conf.cloudera.yarn fs -rm -r -skipTrash hdfs://node1:8020/HiBench/Wordcount/Output
rm: `hdfs://node1:8020/HiBench/Wordcount/Output': No such file or directory
hdfs -.cdh5./bin/hadoop --config /etc/hadoop/conf.cloudera.yarn fs -du -s hdfs://node1:8020/HiBench/Wordcount/Input
Submit MapReduce Job: /opt/cloudera/parcels/CDH--.cdh5./bin/hadoop --config /etc/hadoop/conf.cloudera.yarn jar /opt/cloudera/parcels/CDH--.cdh5./lib/hadoop/../../jars/hadoop-mapreduce-examples--cdh5. -D mapreduce.job.reduces= -D mapreduce.inputformat.class=org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat -D mapreduce.outputformat.class=org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat -D mapreduce.job.inputformat.class=org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat -D mapreduce.job.outputformat.class=org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat hdfs://node1:8020/HiBench/Wordcount/Input hdfs://node1:8020/HiBench/Wordcount/Output
         Bytes Written=
finish HadoopWordcount bench

执行结束以后可以查看分析结果

/report/hibench.report

Type         Date       Time     Input_data_size      Duration(s)          Throughput(bytes/s)  Throughput/node
HadoopWordcount 2019-06-04 16:59:04 37055                20.226               1832                 610                 

\report\wordcount路径下有两个文件夹,分别对应执行了脚本/prepare/prepare.sh和/hadoop/run.sh所产生的信息

\report\wordcount\prepare下有多个文件:monitor.log是原始日志,bench.log是Map-Reduce信息,monitor.html可视化了系统的性能信息,\conf\wordcount.conf本次任务的环境变量

\report\wordcount\hadoop下有多个文件:monitor.log是原始日志,bench.log是Map-Reduce信息,monitor.html可视化了系统的性能信息,\conf\wordcount.conf本次任务的环境变量

monitor.html中包含了Memory usage heatmap等统计图:

根据官方文档 https://github.com/Intel-bigdata/HiBench/blob/master/docs/run-hadoopbench.md ,还可以修改 hibench.scale.profile 调整测试的数据规模,修改 hibench.default.map.parallelism 和 hibench.default.shuffle.parallelism 调整并行化

HiBench成长笔记——(2) CentOS部署安装HiBench的更多相关文章

  1. HiBench成长笔记——(9) Centos安装Maven

    Maven的下载地址是:http://maven.apache.org/download.cgi 安装Maven非常简单,只需要将下载的压缩文件解压就可以了. cd /home/cf/app wget ...

  2. HiBench成长笔记——(7) 阅读《The HiBench Benchmark Suite: Characterization of the MapReduce-Based Data Analysis》

    <The HiBench Benchmark Suite: Characterization of the MapReduce-Based Data Analysis>内容精选 We th ...

  3. HiBench成长笔记——(4) HiBench测试Spark SQL

    很多内容之前的博客已经提过,这里不再赘述,详细内容参照本系列前面的博客:https://www.cnblogs.com/ratels/p/10970905.html 和 https://www.cnb ...

  4. HiBench成长笔记——(3) HiBench测试Spark

    很多内容之前的博客已经提过,这里不再赘述,详细内容参照本系列前面的博客:https://www.cnblogs.com/ratels/p/10970905.html 创建并修改配置文件conf/spa ...

  5. HiBench成长笔记——(5) HiBench-Spark-SQL-Scan源码分析

    run.sh #!/bin/bash # Licensed to the Apache Software Foundation (ASF) under one or more # contributo ...

  6. HiBench成长笔记——(1) HiBench概述

    测试分类 HiBench共计19个测试方向,可大致分为6个测试类别:分别是micro,ml(机器学习),sql,graph,websearch和streaming. 2.1 micro Benchma ...

  7. HiBench成长笔记——(11) 分析源码run.sh

    #!/bin/bash # Licensed to the Apache Software Foundation (ASF) under one or more # contributor licen ...

  8. HiBench成长笔记——(10) 分析源码execute_with_log.py

    #!/usr/bin/env python2 # Licensed to the Apache Software Foundation (ASF) under one or more # contri ...

  9. HiBench成长笔记——(9) 分析源码monitor.py

    monitor.py 是主监控程序,将监控数据写入日志,并统计监控数据生成HTML统计展示页面: #!/usr/bin/env python2 # Licensed to the Apache Sof ...

随机推荐

  1. Jquery 动态交换两个div位置并添加Css动画效果

    前端网页开发中我们经常会遇到需要动态置换两个DIV元素的位置,常见的思路大多是不考虑原始位置,直接采用append或者appendTo方式将两元素进行添加,该法未考虑原始位置,仅会添加为元素的最后一子 ...

  2. Git三招

    一.Git提交指令 git init git第一次使用在当前文件夹初始化一个git仓库,第二次不需要 git add . 把当前文件夹所有文件添加到缓存区中. 可以选特定的文件夹或文件.将后面的.改变 ...

  3. 2019年ipa发布苹果应用商店审核指南

    https://baijiahao.baidu.com/s?id=1623886553597961077&wfr=spider&for=pc ipa 发布审核指南 说明: 本指南为初版 ...

  4. 使用pyinstaller打包.py程序

    使用pyinstaller打包.py程序 例如打包D:/Desktop 目录下的 filename.py 文件 打开 cmd 将目录切换至 D:/Desktop 输入命令 pyinstaller -F ...

  5. c++读取注册表的实例

    // CRegisterTest.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> #in ...

  6. Linux命令:yum命令

    YUM: Yellowdog Update Modifier,rpm的前端程序,可解决软件包相关依赖性,可在多个库之间定位软件包,up2date的替代工具 一.yum命令用法 yum repolist ...

  7. vue-cli 手脚架mock虚拟数据的运用,特别是坑!!!

    1.现在基本的趋势就是前后分离,前后分离就意味着当后台接口还没完成之前,前端是没有接口可以拿来调用的 ,那么mock虚拟数据就很好的解决了这一问题,前端可以直接模拟真实的数据AJAX请求! 运用 步骤 ...

  8. 关于JDK+Tomcat+eclipse+MyEclipse的配置方法

    说一下关于JDK+Tomcat +eclipse+MyEclipse的配置方法: 1.jdk的配置 我用的是jdk1.6版本,与jdk1.5方法相同.执行完安装程序后就要在进行一下配置,步骤如下:右键 ...

  9. js实现超范围的数相加

    在js中能表示的最大安全整数是 9007199254740991,可以用API Number.MAX_SAFE_INTEGER 看一下  超出范围就会发生精度丢失,像这样 解决方法: 相当于一个字符串 ...

  10. 「CF1037D」Valid BFS?

    传送门 Luogu 解题思路 考虑直接模拟 \(\text{BFS}\) 的过程. 对于每一个节点的儿子,先遍历在输入序列中靠前的,判断 \(\text{BFS}\) 是否匹配即可. 细节注意事项 注 ...