代码来源:https://github.com/eriklindernoren/ML-From-Scratch

卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html

激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus):https://www.cnblogs.com/xiximayou/p/12713081.html

损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html

优化器的实现(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html

卷积层反向传播过程:https://www.cnblogs.com/xiximayou/p/12713930.html

全连接层实现:https://www.cnblogs.com/xiximayou/p/12720017.html

class BatchNormalization(Layer):
"""Batch normalization.
"""
def __init__(self, momentum=0.99):
self.momentum = momentum
self.trainable = True
self.eps = 0.01
self.running_mean = None
self.running_var = None def initialize(self, optimizer):
# Initialize the parameters
self.gamma = np.ones(self.input_shape)
self.beta = np.zeros(self.input_shape)
# parameter optimizers
self.gamma_opt = copy.copy(optimizer)
self.beta_opt = copy.copy(optimizer) def parameters(self):
return np.prod(self.gamma.shape) + np.prod(self.beta.shape) def forward_pass(self, X, training=True): # Initialize running mean and variance if first run
if self.running_mean is None:
self.running_mean = np.mean(X, axis=0)
self.running_var = np.var(X, axis=0) if training and self.trainable:
mean = np.mean(X, axis=0)
var = np.var(X, axis=0)
self.running_mean = self.momentum * self.running_mean + (1 - self.momentum) * mean
self.running_var = self.momentum * self.running_var + (1 - self.momentum) * var
else:
mean = self.running_mean
var = self.running_var # Statistics saved for backward pass
self.X_centered = X - mean
self.stddev_inv = 1 / np.sqrt(var + self.eps) X_norm = self.X_centered * self.stddev_inv
output = self.gamma * X_norm + self.beta return output def backward_pass(self, accum_grad): # Save parameters used during the forward pass
gamma = self.gamma # If the layer is trainable the parameters are updated
if self.trainable:
X_norm = self.X_centered * self.stddev_inv
grad_gamma = np.sum(accum_grad * X_norm, axis=0)
grad_beta = np.sum(accum_grad, axis=0) self.gamma = self.gamma_opt.update(self.gamma, grad_gamma)
self.beta = self.beta_opt.update(self.beta, grad_beta) batch_size = accum_grad.shape[0] # The gradient of the loss with respect to the layer inputs (use weights and statistics from forward pass)
accum_grad = (1 / batch_size) * gamma * self.stddev_inv * (
batch_size * accum_grad
- np.sum(accum_grad, axis=0)
- self.X_centered * self.stddev_inv**2 * np.sum(accum_grad * self.X_centered, axis=0)
) return accum_grad def output_shape(self):
return self.input_shape

批量归一化的过程:

前向传播的时候按照公式进行就可以了。需要关注的是BN层反向传播的过程。

accm_grad是上一层传到本层的梯度。反向传播过程:

【python实现卷积神经网络】批量归一化层实现的更多相关文章

  1. 【python实现卷积神经网络】padding2D层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  2. 【python实现卷积神经网络】Flatten层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  3. 【python实现卷积神经网络】Dropout层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  4. 【python实现卷积神经网络】激活层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  5. 【python实现卷积神经网络】池化层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  6. 【python实现卷积神经网络】上采样层upSampling2D实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  7. 【python实现卷积神经网络】卷积层Conv2D实现(带stride、padding)

    关于卷积操作是如何进行的就不必多说了,结合代码一步一步来看卷积层是怎么实现的. 代码来源:https://github.com/eriklindernoren/ML-From-Scratch 先看一下 ...

  8. 【python实现卷积神经网络】开始训练

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  9. 【python实现卷积神经网络】定义训练和测试过程

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  10. 基于Python的卷积神经网络和特征提取

    基于Python的卷积神经网络和特征提取 用户1737318发表于人工智能头条订阅 224 在这篇文章中: Lasagne 和 nolearn 加载MNIST数据集 ConvNet体系结构与训练 预测 ...

随机推荐

  1. iOS包重签名工具,ipa文件重签名,快速签名,SignTool签名工具,好用的签名工具,App重签名

    新工具 ProjectTool 已上线 这是一款快速写白包工具,秒级别写H5游戏壳包,可视化操作,极易使用,支持Swift.Objecive-C双语言 QQ交流群:811715780 进入 Proje ...

  2. Bisecting GlcNAc is a general suppressor of terminal modification of N-glycan (解读人:王茹凯)

    文献名:Bisecting GlcNAc is a general suppressor of terminal modification of N-glycan(平分GlcNAc是N-聚糖末端修饰的 ...

  3. settings插拔式源码

    创建一个文件夹notify __init__.py import settings import importlib def send_all(content): for path_str in se ...

  4. vue cli3配置开发环境、测试环境、生产(线上)环境

    cli3创建vue项目是精简版的少了build和config这2个文件,所以配置开发环境.测试环境.生产环境的话需要自己创建env文件. 需要注意2点: 1.cli2创建项目生成的config文件里的 ...

  5. GBDT梯度提升树算法及官方案例

    梯度提升树是一种决策树的集成算法.它通过反复迭代训练决策树来最小化损失函数.决策树类似,梯度提升树具有可处理类别特征.易扩展到多分类问题.不需特征缩放等性质.Spark.ml通过使用现有decisio ...

  6. Building Applications with Force.com and VisualForce (DEV401) (三):Application Essential:Building Your Data Model

    Dev 401-003:Application Essential:Building Your Data Model Object Relationships1.Link two objects- P ...

  7. 如何通过 JavaCSV 类库来优雅地(偷懒)读写 CSV 文件?

    欢迎关注笔者的公众号: 小哈学Java, 专注于推送 Java 领域优质干货文章!! 个人博客: https://www.exception.site/essay/how-to-create-read ...

  8. 《java编程思想》 初始化与清理

    1.初始化与清理的重要性: 1.许多C程序的错误都源于程序员忘记初始化变量,特别是使用程序库时,如果不知道如何初始化库的构件更容易出错 2.当使用完一个元素时,这个元素就不会有什么影响了,所以很容易就 ...

  9. Python学习前端之JavaScript

    JavaScript介绍 1992年Nombas开发出C-minus-minus(C--)的嵌入式脚本语言(最初绑定在CEnvi软件中),后将其改名ScriptEase(客户端执行的语言). Nets ...

  10. 【python系统学习13】类(class)与对象(object)

    目录: 类(class)和实例 类 实例 小测试 对象(object) 属性和方法 类的创建 伪代码 示例代码 属性(attribute) 方法(method) 类的实例化 实例对象调用类属性和方法 ...