OpenCV-Python 特征匹配 + 单应性查找对象 | 四十五
目标
在本章节中,我们将把calib3d模块中的特征匹配和findHomography混合在一起,以在复杂图像中找到已知对象。
基础
那么我们在上一环节上做了什么?我们使用了queryImage,找到了其中的一些特征点,我们使用了另一个trainImage,也找到了该图像中的特征,并且找到了其中的最佳匹配。简而言之,我们在另一个混乱的图像中找到了对象某些部分的位置。此信息足以在trainImage上准确找到对象。
为此,我们可以使用calib3d模块中的函数,即cv.findHomography()。如果我们从两个图像中传递点集,它将找到该对象的透视变换。然后,我们可以使用cv.perspectiveTransform()查找对象。找到转换至少需要四个正确的点。
我们已经看到,匹配时可能会出现一些可能影响结果的错误。为了解决这个问题,算法使用RANSAC
或LEAST_MEDIAN
(可以由标志决定)。因此,提供正确估计的良好匹配称为“内部点”,其余的称为“外部点”。cv.findHomography()返回指定内部和外部点的掩码。
让我们开始吧!!!
代码
首先,像往常一样,让我们在图像中找到SIFT功能并应用比例测试以找到最佳匹配。
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
MIN_MATCH_COUNT = 10
img1 = cv.imread('box.png',0) # 索引图像
img2 = cv.imread('box_in_scene.png',0) # 训练图像
# 初始化SIFT检测器
sift = cv.xfeatures2d.SIFT_create()
# 用SIFT找到关键点和描述符
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)
# #根据Lowe的比率测试存储所有符合条件的匹配项。
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
现在我们设置一个条件,即至少有10个匹配项(由MIN_MATCH_COUNT
定义)可以找到对象。否则,只需显示一条消息,说明没有足够的匹配项。
如果找到足够的匹配项,我们将在两个图像中提取匹配的关键点的位置。他们被传递以寻找预期的转变。一旦获得了这个3x3转换矩阵,就可以使用它将索引图像的角转换为训练图像中的相应点。然后我们画出来。
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
h,w,d = img1.shape
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
dst = cv.perspectiveTransform(pts,M)
img2 = cv.polylines(img2,[np.int32(dst)],True,255,3, cv.LINE_AA)
else:
print( "Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT) )
matchesMask = None
最后,我们绘制内部线(如果成功找到对象)或匹配关键点(如果失败)。
draw_params = dict(matchColor = (0,255,0), # 用绿色绘制匹配
singlePointColor = None,
matchesMask = matchesMask, # 只绘制内部点
flags = 2)
img3 = cv.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)
plt.imshow(img3, 'gray'),plt.show()
请参阅下面的结果。对象在混乱的图像中标记为白色:
欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:
http://pytorch.panchuang.net/
OpenCV中文官方文档:
http://woshicver.com/
OpenCV-Python 特征匹配 + 单应性查找对象 | 四十五的更多相关文章
- python opencv3 FLANN单应性匹配
git:https://github.com/linyi0604/Computer-Vision 匹配准确率非常高. 单应性指的是图像在投影发生了 畸变后仍然能够有较高的检测和匹配准确率 # codi ...
- OpenCV仿射变换+投射变换+单应性矩阵
本来想用单应性求解小规模运动的物体的位移,但是后来发现即使是很微小的位移也会带来超级大的误差甚至错误求解,看起来这个方法各种行不通,还是要匹配知道深度了以后才能从三维仿射变换来入手了,纠结~ esti ...
- OpenCV 之 平面单应性
上篇 OpenCV 之 图象几何变换 介绍了等距.相似和仿射变换,本篇侧重投影变换的平面单应性.OpenCV相关函数.应用实例等. 1 投影变换 1.1 平面单应性 投影变换 (Projectiv ...
- [OpenCV]基于特征匹配的实时平面目标检测算法
一直想基于传统图像匹配方式做一个融合Demo,也算是对上个阶段学习的一个总结. 由此,便采购了一个摄像头,在此基础上做了实时检测平面目标的特征匹配算法. 代码如下: # coding: utf-8 ' ...
- OpenCV 之 特征匹配
OpenCV 中有两种特征匹配方法:暴力匹配 (Brute force matching) 和 最近邻匹配 (Nearest Neighbors matching) 它们都继承自 Descriptor ...
- 机器学习进阶-案例实战-图像全景拼接-图像全景拼接(RANSCA) 1.sift.detectAndComputer(获得sift图像关键点) 2.cv2.findHomography(计算单应性矩阵H) 3.cv2.warpPerspective(获得单应性变化后的图像) 4.cv2.line(对关键点位置进行连线画图)
1. sift.detectAndComputer(gray, None) # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kp ...
- 相机标定 和 单应性矩阵H
求解相机参数的过程就称之为相机标定. 1.相机模型中的四个平面坐标系: 1.1图像像素坐标系(u,v) 以像素为单位,是以图像的左上方为原点的图像坐标系: 1.2图像物理坐标系(也叫像平面坐标系)(x ...
- 【Computer Vision】图像单应性变换/投影/仿射/透视
一.基础概念 1. projective transformation = homography = collineation. 2. 齐次坐标:使用N+1维坐标来表示N维坐标,例如在2D笛卡尔坐标 ...
- 单应性(homography)变换的推导
矩阵的一个重要作用是将空间中的点变换到另一个空间中.这个作用在国内的<线性代数>教学中基本没有介绍.要能形像地理解这一作用,比较直观的方法就是图像变换,图像变换的方法很多,单应性变换是其中 ...
随机推荐
- Python 异常处理中的 esle
前言 我们知道,在Python中,我们是用try- -excetp- - 来做异常处理的,但Python 有别于其他语法的是在异常处理中还提供了else的处理场景,是的,你没看错,就是在条件判断if- ...
- 大厂面试官问你META-INF/spring.factories要怎么实现自动扫描、自动装配?
大厂面试官问你META-INF/spring.factories要怎么实现自动扫描.自动装配? 很多程序员想面试进互联网大厂,但是也有很多人不知道进入大厂需要具备哪些条件,以及面试官会问哪些问题, ...
- hive、Hbase、mysql的区别
1.Hive和HBase的区别 1)hive是sql语言,通过数据库的方式来操作hdfs文件系统,为了简化编程,底层计算方式为mapreduce. 2)hive是面向行存储的数据库. 3)Hive本身 ...
- OC和C++混编需要注意的问题
文章首发于github.io 2018-12-17 21:01:55 方案一 1. .c文件的identify and type右边栏修改为Objective-C source 2. Built se ...
- OpenCV图像增强(python)
为了得到更加清晰的图像我们需要通过技术对图像进行处理,比如使用对比度增强的方法来处理图像,对比度增强就是对图像输出的灰度级放大到指定的程度,获得图像质量的提升.本文主要通过代码的方式,通过OpenCV ...
- Android开发进阶 -- 通用适配器 CommonAdapter
在Android开发中,我们经常会用到ListView 这个组件,为了将ListView 的内容展示出来,我们会去实现一个Adapter来适配,将Layout中的布局以列表的形式展现到组件中. ...
- 使用pyecharts绘制词云图-淘宝商品评论展示
一.什么是词云图? 词云图是一种用来展现高频关键词的可视化表达,通过文字.色彩.图形的搭配,产生有冲击力地视觉效果,而且能够传达有价值的信息. 制作词云图的网站有很多,简单方便,适合小批量操作. BI ...
- video标签加载视频有声音却黑屏
问题 昨天用户上传了一个视频文件,然而发现虽然有声音但是黑屏. 解释 因为原视频的编码是用 mp4v 格式的,它需要专用的解码器.而 chrome 并不支持,所以无法播放. 然后如果用转码功能转成用 ...
- 查看chrome插件源码
简介 想查看chrome插件的源码,就需要找到chrome插件安装的位置,接着再文件夹下查找此插件的id. mac cd ~/Library/Application Support/Google/Ch ...
- 关于.NET中的控制反转及AutoFac的简单说明
目录 1.控制反转 1.1 什么是依赖? 1.2 什么是控制反转? 1.3 什么是依赖注入? 1.4 简单总结 2.控制反转容器 2.1 IOC容器说明 2.2 使用AutoFac的简介示例 3 使用 ...