目标

在本章节中,我们将把calib3d模块中的特征匹配和findHomography混合在一起,以在复杂图像中找到已知对象。

基础

那么我们在上一环节上做了什么?我们使用了queryImage,找到了其中的一些特征点,我们使用了另一个trainImage,也找到了该图像中的特征,并且找到了其中的最佳匹配。简而言之,我们在另一个混乱的图像中找到了对象某些部分的位置。此信息足以在trainImage上准确找到对象。

为此,我们可以使用calib3d模块中的函数,即cv.findHomography()。如果我们从两个图像中传递点集,它将找到该对象的透视变换。然后,我们可以使用cv.perspectiveTransform()查找对象。找到转换至少需要四个正确的点。

我们已经看到,匹配时可能会出现一些可能影响结果的错误。为了解决这个问题,算法使用RANSACLEAST_MEDIAN(可以由标志决定)。因此,提供正确估计的良好匹配称为“内部点”,其余的称为“外部点”。cv.findHomography()返回指定内部和外部点的掩码。

让我们开始吧!!!

代码

首先,像往常一样,让我们​​在图像中找到SIFT功能并应用比例测试以找到最佳匹配。

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
MIN_MATCH_COUNT = 10
img1 = cv.imread('box.png',0) # 索引图像
img2 = cv.imread('box_in_scene.png',0) # 训练图像
# 初始化SIFT检测器
sift = cv.xfeatures2d.SIFT_create()
# 用SIFT找到关键点和描述符
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)
# #根据Lowe的比率测试存储所有符合条件的匹配项。
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)

现在我们设置一个条件,即至少有10个匹配项(由MIN_MATCH_COUNT定义)可以找到对象。否则,只需显示一条消息,说明没有足够的匹配项。

如果找到足够的匹配项,我们将在两个图像中提取匹配的关键点的位置。他们被传递以寻找预期的转变。一旦获得了这个3x3转换矩阵,就可以使用它将索引图像的角转换为训练图像中的相应点。然后我们画出来。

if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
h,w,d = img1.shape
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
dst = cv.perspectiveTransform(pts,M)
img2 = cv.polylines(img2,[np.int32(dst)],True,255,3, cv.LINE_AA)
else:
print( "Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT) )
matchesMask = None

最后,我们绘制内部线(如果成功找到对象)或匹配关键点(如果失败)。

draw_params = dict(matchColor = (0,255,0), # 用绿色绘制匹配
singlePointColor = None,
matchesMask = matchesMask, # 只绘制内部点
flags = 2)
img3 = cv.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)
plt.imshow(img3, 'gray'),plt.show()

请参阅下面的结果。对象在混乱的图像中标记为白色:

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

OpenCV中文官方文档:

http://woshicver.com/

OpenCV-Python 特征匹配 + 单应性查找对象 | 四十五的更多相关文章

  1. python opencv3 FLANN单应性匹配

    git:https://github.com/linyi0604/Computer-Vision 匹配准确率非常高. 单应性指的是图像在投影发生了 畸变后仍然能够有较高的检测和匹配准确率 # codi ...

  2. OpenCV仿射变换+投射变换+单应性矩阵

    本来想用单应性求解小规模运动的物体的位移,但是后来发现即使是很微小的位移也会带来超级大的误差甚至错误求解,看起来这个方法各种行不通,还是要匹配知道深度了以后才能从三维仿射变换来入手了,纠结~ esti ...

  3. OpenCV 之 平面单应性

    上篇 OpenCV 之 图象几何变换 介绍了等距.相似和仿射变换,本篇侧重投影变换的平面单应性.OpenCV相关函数.应用实例等. 1  投影变换 1.1  平面单应性 投影变换 (Projectiv ...

  4. [OpenCV]基于特征匹配的实时平面目标检测算法

    一直想基于传统图像匹配方式做一个融合Demo,也算是对上个阶段学习的一个总结. 由此,便采购了一个摄像头,在此基础上做了实时检测平面目标的特征匹配算法. 代码如下: # coding: utf-8 ' ...

  5. OpenCV 之 特征匹配

    OpenCV 中有两种特征匹配方法:暴力匹配 (Brute force matching) 和 最近邻匹配 (Nearest Neighbors matching) 它们都继承自 Descriptor ...

  6. 机器学习进阶-案例实战-图像全景拼接-图像全景拼接(RANSCA) 1.sift.detectAndComputer(获得sift图像关键点) 2.cv2.findHomography(计算单应性矩阵H) 3.cv2.warpPerspective(获得单应性变化后的图像) 4.cv2.line(对关键点位置进行连线画图)

    1. sift.detectAndComputer(gray, None)  # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kp ...

  7. 相机标定 和 单应性矩阵H

    求解相机参数的过程就称之为相机标定. 1.相机模型中的四个平面坐标系: 1.1图像像素坐标系(u,v) 以像素为单位,是以图像的左上方为原点的图像坐标系: 1.2图像物理坐标系(也叫像平面坐标系)(x ...

  8. 【Computer Vision】图像单应性变换/投影/仿射/透视

    一.基础概念 1. projective transformation  = homography = collineation. 2. 齐次坐标:使用N+1维坐标来表示N维坐标,例如在2D笛卡尔坐标 ...

  9. 单应性(homography)变换的推导

    矩阵的一个重要作用是将空间中的点变换到另一个空间中.这个作用在国内的<线性代数>教学中基本没有介绍.要能形像地理解这一作用,比较直观的方法就是图像变换,图像变换的方法很多,单应性变换是其中 ...

随机推荐

  1. React类型检查

    类型检查 import PropTypes from 'prop-types' 类名==List List.propTypes = { list: PropTypes.array } // 默认值 L ...

  2. Bootstrap4 正式发布

    历经三年开发,前端框架Bootstrap 4正式发布了.然而今天的Web世界已经和当初Mark Otto发布Bootstrap时的情况大为不同,一些开发者由此质疑它的更新是否还有意义 1.V4版本的主 ...

  3. 【一统江湖的大前端(8)】matter.js 经典物理

    目录 [一统江湖的大前端(8)]matter.js 经典物理 一.经典力学回顾 二. 仿真的实现原理 2.1 基本动力学模拟 2.2 碰撞模拟 三. 物理引擎matter.js 3.1 <愤怒的 ...

  4. Windows SMBv3 CVE-2020-0796漏洞

    今天,Microsoft不小心泄露了有关新产品的信息 蠕虫的 Microsoft服务器消息块(SMB)协议中的漏洞(CVE-2020-0796). 今天,Microsoft不小心泄露了有关安全更新的信 ...

  5. 新建eclipse工作空间的常用设置

    1.设置字体: Window->Preferences->(可以直接搜索font)General -> Appearance ->Colors and Fonts --> ...

  6. 认识Nginx

    无论你用浏览器还是APP访问多数网站,到达的第一站就是Nginx. 后来者居上的Nginx 千禧年前后,互联网业务迎来了高速发展,老牌的Web服务器都无法满足高性能.高可靠的市场需求. 一个开源的(遵 ...

  7. Mysql数据库定时全库备份

    如下脚本用于mysql全库定时备份 mysql_dump_script.sh #!/bin/bash #保存备份个数,最多保留4个文件 number=4 #备份保存路径 backup_dir=/db/ ...

  8. 【07】openlayers 矢量图层

    创建地图: //创建地图 var map = new ol.Map({ //设置显示地图的视图 view: new ol.View({ center: [0, 0],//义地图显示中心于经度0度,纬度 ...

  9. CSS核心概念之盒子模型

    盒子模型(Box Model) 关于更多CSS核心概念的文章请关注GitHub--CSS核心概念. 当对一个文档进行布局的时候,浏览器的渲染引擎会根据标准之一的 CSS 基础框盒模型(CSS basi ...

  10. SIP压力测试——奇林软件kylinPET

    一.Sip协议简介: SIP(Session Initiation Protocol,会话初始协议)是由IETF(Internet Engineering Task Force,因特网工程任务组)制定 ...