讲KMP算法,离不开BF,实际上,KMP就是BF升级版,主要流程和BF一样

不同是在匹配失败时能利用子串的特征减少回溯,利用根据子串特征生成的Next数组来减少

<( ̄︶ ̄)↗[GO!]

!!!所有数组下标都是从0开始

1. 先看看BF算法(暴力破解)

int Brute_force_1(const char *S, const char *T)
{
if (!S || !T)
return -1;
int lenS = strlen(S);
int lenT = strlen(T);
int i = 0; //主串下标索引
int j = 0; //子串下标索引
while(i < lenS && j < lenT)
{
if (S[i] == T[j]) //如果相等一直继续往下匹配
++i,++j;
else //不相等i和j开始回溯
{
i = i-j+1;
j = 0;
}
}
if (j == lenT)
return i - j;
return -1;
}

​ BF算法有几种不同实现,但最终思想都是一样的,以下就是另一个BF实现

int Brute_force_2(const char *S, const char *T)
{
if (!S || !T)
return -1;
int lenS = strlen(S);
int lenT = strlen(T);
for (int i = 0; i <= lenS - lenT; ++i)
{
int k = i, j = 0;
while (k < lenS && j < lenT && S[k] == T[j])
{
++j;
++k;
}
if (j == lenT)
return i; //说明匹配到了
}
return -1;
}

​ 你完全可以根据自己的理解写出BF算法,但在这里,为了BF和KMP统一,我们还是采用第一种实现,即容易看出回溯操作的实现

2. Next[]数组

​ 事实上,书上的next数组生成算法是经过优化后的算法,比较难懂,但你完全可以按照自己的理解做一个

注意:Next[]数组只是在KMP中字符串匹配失败时使用的

void GetNext(int Next[], char *str)
{
assert(str!=NULL);
int len = strlen(str);
if(len>1)Next[0]=0;
//其实Next[0]等于0或者等于-1效果没什么影响,
//因为在KMP中不匹配时判断是不是第一个字符不匹配用用的是j==0;-----if (j==0||Next[j]==0),
if(len>2)Next[1]=0;
//Next[]等于0时说明需要讲i回溯到子串头的下一个位置(i=i-j+1);
//此时j也回到子串头位置(j=0)
for(int i=2;i<len;++i)
{
for(int j=i-1;j>0;--j)
{
if(!strncmp(&str[0],&str[i-j],j))
{
Next[i]=j;break; //找到最大重复子子串(子串中的子串)
//Next[]为其他值则i不变,讲j回溯到Next[j]的位置(j=Next[j])
}
else Next[i]=0;
}
}
}

​ 这个时间复杂度要比书上的方法高很多,但好理解,真实的反映了Next数组的本质。

3. KMP

int KMP(const char *S, const char *T, const int *Next)
{
if (!S || !T||!Next)
return -1;
int lenS = strlen(S);
int lenT = strlen(T);
int i = 0; //主串下标索引
int j = 0; //子串下标索引
while(i < lenS && j < lenT)
{
if (S[i] == T[j]) ++i,++j; //若相等则继续匹配下一个字符
else //不相等则回溯
{
//(当j==0时,即第一个字符不匹配,和Next[j]==0时事实上与BF算法相同)
if (j==0||Next[j]==0)
{
i = i-j+1;
j = 0;
}
else j = Next[j];//主串i位置不变,讲子串下标索引挪到Next[j]的位置
}
}
if (j == lenT)
return i - j;
return -1;
}

​ 这个回溯时的操作实际上是把两种情况合成一种,拆开后就是下面的,就是生成next数组那块三种情况

while (i < lenS && j < lenT)
{
if (S[i] == T[j])
++i, ++j;
else
{
if (j == 0)
{
++i; //等价于i = i-0+1;j本身就等于0
}
else if (Next[j] == 0)
{
i = i - j + 1;
j = 0;
}
else
{
j = Next[j];
}
}
}

扩展

​ Next数组有进一步改进的可能,如果发生失配,失配点子串字符若与回溯到的字符相同,则再次匹配肯定失败,所以改进的Next数组进一步处理了这种情况,消除了回溯

void GetNext_pro(int Next[], const char *str)
{
assert(str!=NULL);
int len = strlen(str);
if(len>1)Next[0]=-1;
//其实Next[0]等于0或者等于-1效果没什么影响,
//因为在KMP中不匹配时判断是不是第一个字符不匹配用用的是j==0;-----if (j==0||Next[j]==0),
if(len>2)Next[1]=0;
//Next[]等于0时说明需要讲i回溯到子串头的下一个位置(i=i-j+1);
//此时j也回到子串头位置(j=0)
for(int i=2;i<len;++i)
{
for(int j=i-1;j>0;--j)
{
if(!strncmp(&str[0],&str[i-j],j))
{
if(str[i]==str[j])
Next[i]==Next[j];
else
Next[i]=j;
break; //找到最大重复子子串(子串中的子串)
//Next[]为其他值则i不变,讲j回溯到Next[j]的位置(j=Next[j])
}
else Next[i]=0;
}
}
}

测试代码

int KMP(const char *S, const char *T)
{
if (!S || !T)
return -1;
int Next[MAXSIZE] = {0};
GetNext(Next,T);
print_arr(Next, strlen(T));
GetNext_pro(Next,T);
print_arr(Next, strlen(T)); int lenS = strlen(S);
int lenT = strlen(T);
int i = 0; //主串下标索引
int j = 0; //子串下标索引
while(i < lenS && j < lenT)
{
if (S[i] == T[j])
++i,++j; //若相等则继续匹配下一个字符
else //不相等则回溯
{
//(当j==0时,即第一个字符不匹配,和Next[j]==0时事实上与BF算法相同)
if (j==0||Next[j]==0)
{
i = i-j+1;
j = 0;
}
else j = Next[j];//主串i位置不变,将子串下标索引挪到Next[j]的位置
}
}
if (j == lenT)
return i - j;
return -1;
}
int main(void)
{
char source[MAXSIZE] = "adcfabadcf";
char target[MAXSIZE] = "abcabcabbac";
printf("%d\n", Brute_force_1(source, target));
printf("%d\n", Brute_force_2(source, target));
printf("%d\n", KMP(source, target)); getchar();
return 0;
}
附上BF与KMP的比较,你会发现两者其实挺相似

总结

​ 其实核心就在于本文第一句话的理解。

​ KMP在子串含有相同前后缀时,利用Next数组减少匹配失败时的回溯次数有优势,而改进的Next数组在此基础上若子串含有较多相同字符则更进一步减少回溯。

​ 所以KMP总之是利用子串的特征来削除回溯,如果子串并不具有这些特征,那就还没有BF好,因为KMP还需要额外的空间来存放Next数组

​ 书上的next数组的生成很难懂,加油理解中。。。(ง •_•)ง

KMP 算法简单解释的更多相关文章

  1. KMP算法具体解释(贴链接)

    ---------------------------------------------------------------------------------------------------- ...

  2. KMP算法具体解释(转)

    作者:July. 出处:http://blog.csdn.net/v_JULY_v/. 引记 此前一天,一位MS的朋友邀我一起去与他讨论高速排序,红黑树,字典树,B树.后缀树,包含KMP算法,只有在解 ...

  3. KMP算法简单回顾

    前言 虽从事企业应用的设计与开发,闲暇之时,还是偶尔涉猎数学和算法的东西,本篇根据个人角度来写一点关于KMP串匹配的东西,一方面向伟人致敬,另一方面也是练练手,头脑风暴.我在自娱自乐,路过的朋友别太认 ...

  4. KMP算法具体解释

    这几天学习kmp算法,解决字符串的匹配问题.開始的时候都是用到BF算法,(BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串T的第一个字符进行匹配 ...

  5. 串的应用与kmp算法讲解--学习笔记

    串的应用与kmp算法讲解 1. 写作目的 平时学习总结的学习笔记,方便自己理解加深印象.同时希望可以帮到正在学习这方面知识的同学,可以相互学习.新手上路请多关照,如果问题还请不吝赐教. 2. 串的逻辑 ...

  6. 字符串匹配KMP算法的C语言实现

    字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD" ...

  7. 字符串匹配(KMP 算法 含代码)

    主要是针对字符串的匹配算法进行解说 有关字符串的基本知识 传统的串匹配法 模式匹配的一种改进算法KMP算法 网上一比較易懂的解说 小样例 1计算next 2计算nextval 代码 有关字符串的基本知 ...

  8. (收藏)KMP算法的前缀next数组最通俗的解释

    我们在一个母字符串中查找一个子字符串有很多方法.KMP是一种最常见的改进算法,它可以在匹配过程中失配的情况下,有效地多往后面跳几个字符,加快匹配速度. 当然我们可以看到这个算法针对的是子串有对称属性, ...

  9. KMP算法的next[]数组通俗解释

    原文:https://blog.csdn.net/yearn520/article/details/6729426 我们在一个母字符串中查找一个子字符串有很多方法.KMP是一种最常见的改进算法,它可以 ...

随机推荐

  1. iOS多线程开发之NSOperation

    一.什么是NSOperation? NSOperation是苹果提供的一套多线程解决方案.实际上NSOperation是基于GCD更高一层的封装,但是比GCD更加的面向对象.代码可读性更高.可控性更强 ...

  2. Turn and Stun server · J

    本文简介了Turnserver(Turn + Stun)服务器的搭建.Turnserver主要提供了stun服务,支撑NAT.防火墙穿透,turn服务器,支撑打洞失败时的数据中转.使用场景上类似于前端 ...

  3. linux下大文件处理

    linux下采用先分割后合并的策略处理大文件 第一步:分割文件 split split 参数:-a, --suffix-length=N     指定输出文件名的后缀,默认为2个-b, --bytes ...

  4. 安卓权威编程指南 挑战练习 25章 深度优化 PhotoGallery 应用

    你可能已经注意到了,提交搜索时, RecyclerView 要等好一会才能刷新显示搜索结果.请接受挑战,让搜索过程更流畅一些.用户一提交搜索,就隐藏软键盘,收起 SearchView 视图(回到只显示 ...

  5. 网络字体反爬之pyspider爬取起点中文小说

    前几天跟同事聊到最近在看什么小说,想起之前看过一篇文章说的是网络十大水文,就想把起点上的小说信息爬一下,搞点可视化数据看看.这段时间正在看爬虫框架-pyspider,觉得这种网站用框架还是很方便的,所 ...

  6. 初识SpringAOP

    概述 AOP(Aspect Oriented Programming),即面向切面编程 ​ 通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP是OOP的延伸,是软件系统开发中的一个 ...

  7. swoole(1)使用docker安装swoole环境

    1.下载镜像 pull php 镜像 docker pull php:7.3-alpine3.8 创建容器 docker run -it --name test php:7.3-alpine3.8 s ...

  8. ORB-SLAM2 运行 —— ROS + Android 手机摄像头

    转载请注明出处,谢谢 原创作者:Mingrui 原创链接:https://www.cnblogs.com/MingruiYu/p/12404730.html 本文要点: ROS 配置安装 解决 sud ...

  9. svg和css3创建环形渐变进度条

    在负责的项目中,有一个环形渐变读取进度的效果的需求,于是在网上查阅相关资料整理一下.代码如下: <!DOCTYPE html> <html lang="en"&g ...

  10. 浏览器内核之 HTML 解释器和 DOM 模型

    微信公众号:爱写bugger的阿拉斯加如有问题或建议,请后台留言,我会尽力解决你的问题. 前言 此文章是我最近在看的[WebKit 技术内幕]一书的一些理解和做的笔记.而[WebKit 技术内幕]是基 ...