#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; long long mul(long long a,long long n,long long mo){
long long ans=;
while (n){
if (n&) ans=(ans+a)%mo;
a=(a+a)%mo;
n/=;
}
return ans;
} long long pow(long long a,long long n,long long mo){
long long ans=;
while (n){
if (n&) ans=mul(ans,a,mo);
a=mul(a,a,mo);
n/=;
}
return ans;
} bool Miller_Rabin(long long n){
if (n<=){
if (n==) return true;
else return false;
}
if (n%==) return false;
long long u=n-;
while (u%==){
u/=;
}
int t=1e2;
while (t--){
long long a=(rand()%(n-))+;
long long x=pow(a,u,n);
long long w=u*;
long long y=mul(x,x,n);
while (w<n){
if (y==&&x!=&&x!=(n-)) return false;
x=y;
y=mul(y,y,n);
w*=;
}
if (x!=) return false;
}
return true;
} int main(){
int t;
scanf("%d",&t);
while (t--){
long long n;
scanf("%lld",&n);
if (Miller_Rabin(n)) printf("Yes\n");
else printf("No\n");
} }
费马小定理:对于质数p和任意整数a,有a^p ≡ a(mod p)(同余)。反之,若满足a^p ≡ a(mod p),p也有很大概率为质数。
将两边同时约去一个a,则有a^(p-1) ≡ 1(mod p)

也即是说:假设我们要测试n是否为质数。我们可以随机选取一个数a,然后计算a^(n-1) mod n,如果结果不为1,我们可以100%断定n不是质数。

否则我们再随机选取一个新的数a进行测试。如此反复多次,如果每次结果都是1,我们就假定n是质数。

该测试被称为Fermat测试。需要注意的是:Fermat测试不一定是准确的,有可能出现把合数误判为质数的情况。

Miller和Rabin在Fermat测试上,建立了Miller-Rabin质数测试算法。

与Fermat测试相比,增加了一个二次探测定理:

如果p是奇素数,则 x^2 ≡ 1(mod p)的解为 x ≡ 1 或 x ≡ p - 1(mod p)

如果a^(n-1) ≡ 1 (mod n)成立,Miller-Rabin算法不是立即找另一个a进行测试,而是看n-1是不是偶数。如果n-1是偶数,另u=(n-1)/2,并检查是否满足二次探测定理即a^u ≡ 1 或 a^u ≡ n - 1(mod n)。

举个Matrix67 Blog上的例子,假设n=341,我们选取的a=2。则第一次测试时,2^340 mod 341=1。由于340是偶数,因此我们检查2^170,得到2^170 mod 341=1,满足二次探测定理。同时由于170还是偶数,因此我们进一步检查2^85 mod 341=32。此时不满足二次探测定理,因此可以判定341不为质数。

Miller_Rabin素数测试的更多相关文章

  1. 数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 29046   Accepted: 7342 Case ...

  2. hdu 6169 Senior PanⅡ Miller_Rabin素数测试+容斥

    Senior PanⅡ Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others) Pr ...

  3. Miller_Rabin 素数测试

    费马定理的逆定理几乎可以用来判断一个数是否为素数,但是有一些数是判断不出来的,因此,Miller_Rabin测试方法对费马的测试过程做了改进,克服其存在的问题. 推理过程如下(摘自维基百科): 摘自另 ...

  4. Miller_Rabin素数测试【学习笔记】

    引语:在数论中,对于素数的研究一直就很多,素数测试的方法也是非常多,如埃式筛法,6N±1法,或者直接暴力判(试除法).但是如果要判断比较大的数是否为素数,那么传统的试除法和筛法都不再适用.所以我们需要 ...

  5. 数学:随机素数测试(Miller_Rabin算法)和求整数素因子(Pollard_rho算法)

    POJ1811 给一个大数,判断是否是素数,如果不是素数,打印出它的最小质因数 随机素数测试(Miller_Rabin算法) 求整数素因子(Pollard_rho算法) 科技题 #include< ...

  6. Miiler-Robin素数测试与Pollard-Rho大数分解法

    板题 Miiler-Robin素数测试 目前已知分解质因数以及检测质数确定性方法就只能\(sqrt{n}\)试除 但是我们可以基于大量测试的随机算法而有大把握说明一个数是质数 Miler-Robin素 ...

  7. Miller-Rabin素数测试算法(POJ1811Prime Test)

    题目链接:http://poj.org/problem?id=1811 题目解析:2<=n<2^54,如果n是素数直接输出,否则求N的最小质因数. 求大整数最小质因数的算法没看懂,不打算看 ...

  8. poj 1811 Prime Test 大数素数测试+大数因子分解

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 27129   Accepted: 6713 Case ...

  9. Miller-Rabbin随机性素数测试算法

    //**************************************************************** // Miller_Rabin 算法进行素数测试 //速度快,而且 ...

随机推荐

  1. .vimrc vim 配置大全

    map <F9> :call SaveInputData()<CR>func! SaveInputData() exec "tabnew" exec 'no ...

  2. MFC 自绘按钮 消息响应

    单检测到按下消息时,发送一个消息 m_pParent->PostMessage(WM_COMMAND, IDC_BUTTON1); 然后再在消息映射里建立映射. ON_COMMAND(IDC_B ...

  3. 谈谈React Native环境安装中我遇到的坑

    谈谈React Native环境安装 这个坑把我困了好久,真的是接近崩溃的边缘...整理出来分享给大家,希望遇到跟我一样问题的小伙伴能尽快找到答案. 首先,这是在初始化App之后,react-nati ...

  4. IIS7 启用GZip压缩

    GZip压缩通常会达到70%以上的压缩率,如果是手机Web这无疑会使网站的访问速度大大增加,无论是CSS合并.JS合并.图片合并都不如GZip压缩来得简单直接.如果一个网页是100K,那么启用GZip ...

  5. .NET (一)委托第一讲:什么是委托

    1.为什么要使用委托? 生活中的委托就是委托他人帮我们去办一件事情,程序中的委托类似.看下面的例子 class Class1 { static void Main(String[] args) { L ...

  6. Windows内核原理系列01 - 基本概念

    1.Windows API Windows 应用编程接口(API)是针对WIndwos操作系统用户模式的系统编程接口,包含在WindwosSDK中. 2.关于.NET .NET由一个被称为FCL的类库 ...

  7. 关于html自闭合标签要不要加空格和斜杠的问题?

    问题描述:可能很多人都遇到过这个问题,写网页时,link img br input等等这些标签时到底要不要在结尾加上空格和斜杠呢? 我曾经貌似在<编写高质量代码>上看到过这样的介绍,遇到l ...

  8. EBS中启用OAF页面个性化三个配置

    启用OAF页面个性化三个配置(Profiles) FND:诊断英文为FND: Diagnostics,用于设置是否显示“关于此页” 个性化自助定义英文为Personalize Self-Service ...

  9. mongodb 的备份恢复导入与导出

    导入导出 use hndb; db.s.save({name:'李四',age:18,score:80,address:'郑州'}); db.s.save({name:'李三',age:8,score ...

  10. mongo group by

    mongo的写法与mysql等sql有着天壤之别,如最近在统计爬虫抓取的数据,其中一个就是按字段从大到小取前十个: sql写法:select count(id) from invest group b ...