1.Dijkstra的局限性

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。

列如以下这个例子:

在这个图中,求从A到C的最短路,如果用Dijkstra根据贪心的思想,选择与A最接近的点C,长度为7,以后不再变化。但是很明显此图最短路为5。归结原因是Dijkstra采用贪心思想,不从整体考虑结果,只从当前情况考虑选择最优。

2.Bellman-Ford算法的引入

为了能够解决边上带有负权值的单源最短路问题,Bellman(贝尔曼)和Ford(福特)提出了从源点逐次途径其他顶点,以缩短达到终点的最短路径长度的问题。该算法有一个限制条件:要求图中不能包含权值总和为负值的回路。

3.适用条件与范围:

单源最短路径(从源点s到其它所有顶点v);

有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图);

边权可正可负(如有负权回路输出错误提示);

4.思想:

  我们规定节点都有一个key值,key值记录的是开始节点到本节点的最小距离,每个节点也都有一个p指针指向他的前驱节点。这里我们规定一个操作叫做松弛操作,我们的算法也是最终基于这个操作的。松弛操作就是去更新key的值。

节点B的key值为8,表示从开始节点到B节点之前的最短估计距离是8,而节点A的key值3,是说从开始节点到A节点最短估计是3,当我们发现这个边时,从A到B的距离比较近,所以我们去更新B的key值,同时把B的前驱节点设置成A。这个过程就是松弛操作。

  我们说的Bellman-Ford算法是最简单的算法,就是从开始节点开始循环每一条边,对他进行松弛操作。最后得到的路径就是最短路径。

5.算法步骤:

1.初始化:将除源点外的所有顶点的最短距离估计值 d[v] ← +∞, d[s] ←0;
2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 d[v]中。

代码:

 #include<iostream>
#include<cstdio>
using namespace std;
#define MAX 0x3f3f3f3f
#define N 1010
int nodenum, edgenum, original; //点,边,起点
typedef struct Edge //边
{
int u, v;
int cost;
} Edge;
Edge edge[N];
int dis[N], pre[N];
bool Bellman_Ford()
{
int ok;
for(int i = ; i <= nodenum; ++i) //初始化,起点本身赋值为0,其余赋值为最大
dis[i] = (i == original ? : MAX);
for(int i = ; i <= nodenum - ; ++i)
{
ok=;
for(int j = ; j <= edgenum; ++j)
if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反)
{
dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;
pre[edge[j].v] = edge[j].u;//这里用来存储路径
ok=;
}
if(ok==) //优化这里,如果这趟没跟新任何节点就可以直接退出了。
break;
}
bool flag = ; //判断是否含有负权回路
for(int i = ; i <= edgenum; ++i)
if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost)
{
flag = ;
break;
}
return flag;
} void print_path(int root) //打印最短路的路径(反向)
{
while(root != pre[root]) //前驱
{
printf("%d-->", root);
root = pre[root];
}
if(root == pre[root])
printf("%d\n", root);
} int main()
{
scanf("%d%d%d", &nodenum, &edgenum, &original);//输入点边起点,一般起点规定为1
pre[original] = original;//为了输出最短路用的,前驱为本身
for(int i = ; i <= edgenum; ++i)
{
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);//有向图
}
if(Bellman_Ford())//如果没有负权
for(int i = ; i <= nodenum; ++i) //每个点最短路
{
printf("%d\n", dis[i]);
printf("Path:");
print_path(i);
}
else
printf("have negative circle\n");
return ;
}

单源最短路——Bellman-Ford算法的更多相关文章

  1. spfa 单源最短路究极算法

    学习博客链接:SPFA 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm.     SPFA算法是西南交通大学段凡丁于1994年发表的.    从名字我 ...

  2. 2018/1/28 每日一学 单源最短路的SPFA算法以及其他三大最短路算法比较总结

    刚刚AC的pj普及组第四题就是一种单源最短路. 我们知道当一个图存在负权边时像Dijkstra等算法便无法实现: 而Bellman-Ford算法的复杂度又过高O(V*E),SPFA算法便派上用场了. ...

  3. 单源最短路:Dijkstra算法 及 关于负权的讨论

    描述: 对于图(有向无向都适用),求某一点到其他任一点的最短路径(不能有负权边). 操作: 1. 初始化: 一个节点大小的数组dist[n] 源点的距离初始化为0,与源点直接相连的初始化为其权重,其他 ...

  4. 单源最短路:Bellman-Ford算法 及 证明

    描述: 求图中某一点到其他任一点的最短距离. 操作: 1. 初始化 结果保存在一个dist数组里,源点的结果初始化为0,其他初始化为无穷大(如INT32_MAX). 2. 计算: 两重for循环,第一 ...

  5. 单源最短路模板(dijkstra)

    单源最短路(dijkstra算法及堆优化) 弱化版题目链接 n^2 dijkstra模板 #include<iostream> #include<cstdio> #includ ...

  6. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  7. [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  8. 用scheme语言实现SPFA算法(单源最短路)

    最近自己陷入了很长时间的学习和思考之中,突然发现好久没有更新博文了,于是便想更新一篇. 这篇文章是我之前程序设计语言课作业中一段代码,用scheme语言实现单源最段路算法.当时的我,花了一整天时间,学 ...

  9. 模板C++ 03图论算法 1最短路之单源最短路(SPFA)

    3.1最短路之单源最短路(SPFA) 松弛:常听人说松弛,一直不懂,后来明白其实就是更新某点到源点最短距离. 邻接表:表示与一个点联通的所有路. 如果从一个点沿着某条路径出发,又回到了自己,而且所经过 ...

随机推荐

  1. to meet you

    1:Java特性 (1)平台无关性 一次编译到处运行 (2)GC 垃圾回收机制 (3)语言特性 泛型-反射机制-lambda表达式 (4)面向对象 面向对象语言-三大特性(封装,继承,多态) (5)类 ...

  2. webpack使用打包的一些心得

    webpack打包工具: module.exports:输出require:引入 require('!style-loader!css-loader!./***.css'):静态样式引入 npm in ...

  3. select 宽度跟随option内容自适应

    传统的select在没有设置固定宽度的情况,会因为自身的 option 选项的里,宽度最宽的option作为select本身的宽度 例如 可见效果为: select的宽度因为"宽度最宽的op ...

  4. 使用babel

    1).Babel支持NPM包形式的安装,打开命令行窗口,切换到项目根目录,命令如下 npm install babel-cli 2).安装成功后,在package.json文件里添加如下代码 &quo ...

  5. 伪类选择器a的属性

    在使用a中的四个属性时必须按照顺序来,不管用那两个都是要依照这个顺序来 1.a:link未访问过的状态 a:link{ color:red; } 2.a:visited已访问的 a:visited{ ...

  6. Redis 之复制-初入江湖

    一.前言 在分布式系统中,为了解决单点问题,通常会把数据复制多个副本部署到其他机器,满足故障恢复合负载均衡等需求.Redis也是如此,它为我们提供了复制的功能,实现了相同数据的多个Redis副本.复制 ...

  7. A.Activity planning

    题目描述There is a collection of n activities E={1,2,..,n}, each of which requires the same resource, su ...

  8. C语言中赋值表达式的返回值是什么?

    我们或多或少都有过,或者见过将赋值表达式参与运算的情况.这通常会伴随着一些意想不到的问题.今天我就见到了一段奇怪的代码: #include<stdio.h> int main() { ; ...

  9. sed: unix与doc换行的转换

    在Linux (Unix)平台下回车换行以\n表示 在Window平台下回车换行以\r\n表示 两者的差异导致了: 在window下看Linux的文本排版全乱 在Linux在看Window的文本则是存 ...

  10. 20155209 2016-2017-2 《Java程序设计》第1周学习总结

    20155209 2016-2017-2 <Java程序设计>第1周学习总结 初读教材对每章节的提问 第一章:为什么java被广泛使用,java这样的平台相比其它语言有什么实质的好处? 第 ...