最小生成树-Borůvka算法
一般求最小生成树的时候,最流行的是Kruskal算法,一种基于拟阵证明的贪心,通过给边排序再扫描一次边集,利用并查集优化得到,复杂度为\(O(ElogE)\)。另一种用得比较少的是Prim算法,利用优先队列实现做到\(O(ElogV)\)。
在翻ZYQN博客的时候,看见他写的位运算最小生成树中提到了Borůvka算法,于是学了一下。
算法
Borůvka算法是1926年发明的,是最早发明的最小生成树算法,复杂度为\(O(ElogV)\)。
算法思想非常简单。初始时每个点都是一颗不同的树,每次遍历边表,找距离每棵树最近的另一棵树,并把它们连起来。可以发现,每一次一棵树都与另一棵树连接起来,所以每次树的数量都至少减少到一半,所以这样操作的次数为\(O(logV)\)次。每次我们遍历边表,连接所用的时间为\(O(E+V*\alpha (V))\),所以总复杂度为\(O(ElogV)\),实现起来也非常简单。
代码
参考bzoj2429的题解。
最小生成树-Borůvka算法的更多相关文章
- Codeforces.888G.Xor-MST(Borůvka算法求MST 贪心 Trie)
题目链接 \(Description\) 有一张\(n\)个点的完全图,每个点的权值为\(a_i\),两个点之间的边权为\(a_i\ xor\ a_j\).求该图的最小生成树. \(n\leq2*10 ...
- Borůvka (Sollin) 算法求 MST 最小生成树
基本思路: 用定点数组记录每个子树的最近邻居. 对于每一条边进行处理: 如果这条边连成的两个顶点同属于一个集合,则不处理,否则检测这条边连接的两个子树,如果是连接这两个子树的最小边,则更新 (合并). ...
- Kruskal vs Borůvka
做了个对比.Borůvka算法对于稠密图效果特别好.这两个都是求生成森林的算法.Prim+heap+tarjan过于难写不写了. V=200,E=1000 Kruskal method 4875048 ...
- Borůvka algorithm
Borůvka algorithm 我好无聊啊,直接把wiki的算法介绍翻译一下把. wiki关于Borůvka algorithm的链接:链接 Borůvka algorithm是一个在所有边权都是 ...
- 【做题】CSA72G - MST and Rectangles——Borůvka&线段树
原文链接 https://www.cnblogs.com/cly-none/p/CSA72G.html 题意:有一个\(n \times n\)的矩阵\(A\),\(m\)次操作,每次在\(A\)上三 ...
- 最小生成树的Kruskal算法实现
最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...
- 最小生成树之Prim算法,Kruskal算法
Prim算法 1 .概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gr ...
- 数据结构--画画--最小生成树(Prim算法)
通信网络的最小生成树配置,它是使右侧的生成树值并最小化.经常使用Prim和Kruskal算法.看Prim算法:以防万一N={V,{E}}它是在通信网络,TE它是N设置边的最小生成树.从算法U={u0} ...
- C++编程练习(10)----“图的最小生成树“(Prim算法、Kruskal算法)
1.Prim 算法 以某顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树. 2.Kruskal 算法 直接寻找最小权值的边来构建最小生成树. 比较: Kruskal 算法主要是针对边来展开,边数 ...
随机推荐
- mysql的启动,停止与重启
启动mysql:方式一:sudo /etc/init.d/mysql start 方式二:sudo start mysql方式三:sudo service mysql start 停止mysql:方式 ...
- PostgreSQL的pg_stats学习
磨砺技术珠矶,践行数据之道,追求卓越价值 回到上一级页面: PostgreSQL统计信息索引页 回到顶级页面:PostgreSQL索引页 对于pg_stas,说明文档在这里: http://w ...
- KVM克隆CentOS6虚拟机后无法启动
启动网卡报如下错误: Bringing up interface eth0: Device eth0 does not seem to be present,delaying initializati ...
- asp.net core添加全局异常处理及log4net、Nlog应用
0.目录 整体架构目录:ASP.NET Core分布式项目实战-目录 一.介绍 此篇文章将会介绍项目的全局异常收集以及采用log4net或者NLog记录. 众所周知,一旦自己的项目报错,如果没有进行处 ...
- docker error:/root/.docker/config.json: is a directory
问题: 本地没有taskworker镜像,docker从远端拉取,但是拉取时需要读取config.json配置,解析配置时,发现config.json是个目录,错误信息如下: taskworker_1 ...
- Linux环境下Java应用性能分析定位-CPU使用篇
1 CPU热点分析定位背景 CPU资源还是很昂贵的,为了深刻感受到这种昂贵,间下图当前CPU的资源售价: 所以对于程序猿们来说,需要让程序合理高效的使用CPU资源.利用有限的CPU资源来解决完 ...
- H2O Driverless AI
H2O Driverless AI(H2O无驱动人工智能平台)是一个自动化的机器学习平台,它给你一个有着丰富经验的“数据科学家之盒”来完成你的算法. 使AI技术得到大规模应用 各地的企业都意识到人工智 ...
- mysql中latin1编码中文转utf8
在mysql中,对应的表字段编码通常默认为lartin1编码,在本地客户端显示的时候看着是乱码,但是通过mysql -u -p -h命令登录后,select查询到数据是正常的,通过jdbc或者php等 ...
- <力荐>非常好的正则表达式的详解<力荐>
正则表达式(regular expression)描述了一种字符串匹配的模式,可以用来检查一个串是否含有某种子串.将匹配的子串做替换或者从某个串中取出符合某个条件的子串等. 列目录时, dir *.t ...
- GitHub 的简单使用
GitHub 的简单使用 2016-01-28 16:32:481909浏览1评论 一.Git 版本控制器 commit:做一个版本:commit new file:添加到版本中,下边填的是项目的描述 ...